Lightweight Virtual Machines

Steven D. Gribble, Andrew Whitaker
Department of Computer Science and Engineering

University of Washington

{gribble,andrew}@cs.washington.edu




Some context for the next hour

 This is a new research project starting at UW
— high risk, high reward

— significant implementation complexity, possibly rife
with conceptual and design pitfalls

 This is your chance to have huge impact!
— tell us if you believe the story, the approach, etc.

- help us pick driving applications

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Research agenda

e Interesting new set of applications is emerging

- they all require lightweight protection domains
e hundreds per physical machine, rapid context switching

e complete isolation between the domains

 Qur research goal

— to design, build, and evaluate one way of doing this

e virtual machines
— think VMware, not JVM

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Meta-outline

e Steve Gribble (the “what™)
-~ motivating the applications
— exploring tradeoffs between methods
— I1dentifying core challenges with VM’s
« Andrew Whitaker (the “how”)
— picking an architecture to virtualize

— resource management strategies

— some simple first steps (risk reduction!)

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Qutline

 Driving applications and their characteristics

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Content delivery: not just static anymore

« Recent progression of content-delivery architectures
— CDNs, proxy caches, P2P, ...

* premise same for all: replicate static content
— but: large and increasing fraction of content is dynamic
* 20-40% of web requests are to dynamic content [WWolman99]

* these systems have or soon will “hit the wall”

 Need to think about distributing dynamic content!

— Inject content-generation code into CDNs, caches, ...
* infrastructure must completely distrust this code
* an isolation and security challenge
— existing research doesn’t adequately solve isolation problem

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Content delivery: challenges of scale

 High degree of concurrency in caches, servers

- lessons from web proxy caches
e hundreds/thousands web pages in hot set

e O(100) simultaneous reguests at any time

e Driven by Zipfian popularity distributions

— 50% of access to 6% sites g /

— 20% of accesses to least e
popular 50% of sites A

- need fast context switching! | ¢ " | ——"

1 10 100 1000 10000

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Pushing Internet services

e Vision for future applications: the network is computer

— requires scalable, available hosting infrastructure
* also requires software architecture (same reasons)

 Barrier to deployment of new services is high
— cost of physical equipment large
e >=]1 physical machine, rack space, power, admin, etc.
— stifles grassroots service innovation
e l|deal: push new services into virtual hosting site
— most will be unpopular: must multiplex large number of services

— same isolation, multiplexing, context switching issues as before

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Measurement code

« Measuring the wide-area Internet is interesting

— Access, NIMI, etc.: sprinkle machines across WAN
* researchers share machines for experiments

* upload measurement, analysis code into machines

— leads to a dilemma
* experiments need to run for long periods

* yet, for isolation, they are currently time-division mux’ed

— Instead: run many experiments concurrently

* need way of safely mux’ing resources

« Efficiency is key challenge here
— can't perturb/reduce throughput

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



What do these have in common?

« Host must execute untrusted code
- need a watertight protection domain to isolate
« Large degree of concurrency required

— implies protection domains must be lightweight

* S0 can run hundreds simultaneously
— Implies fast context switching between domains
* Zipf: implies swapping domains in/out at tail
— implies careful control of resource mux’ing
« Little/no data sharing between domains is necessary
— possibly not true for CGlI's backed by DB?

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Qutline

 Argument for virtual machines

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Our intended approach

* Virtualize at the HW interface level using virtual
machine monitors

Q. Q. Q. Q.

. Q. Q. Q. Q.

protection, © | o | ke

abstractions, —» ‘ ’
What you're nhaming sharing
used to operating system
resources —»
hardware

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Our intended approach

* Virtualize at the HW interface level using virtual
machine monitors

o o o o
o o o o
) @ (qv) - U 4y 4y
abstractlons\A

_ _ , nilwnm nilwnm
Virtual machine protection, ol o ol e

. resources, > _ :

mMonitors - virtual machine
9 monitor
hardware

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Why VMs?

Three characteristics argue for VMs:

1. VM’s don’t impose fixed, high-level
abstractions

e as compared with OS’s

2. VM’'s provide a simple, intuitive sharing model

e virtual networks between virtual machines

3. VM’s enforce private name spaces

e Impossible to name resources in another VM

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



1. No fixed, high-level abstractions

 Fixed abstractions make it hard to express isolation
- e.g., virtual address spaces are too coarse-grained
- e.g., DB’s need record-level isolation, c.f. file system
— virtual machines: defer abstractions to higher layer
e don’t impose single protection interface on apps
 High level abstractions have “layer-below” problems

— semantic gap between abstraction and the resources being
protected below abstraction
* shared file descriptors bypassing FS access control
» packet sniffer capturing shared files through NFS
* forced core dumps reveal passwords

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Compare VMs with Exokernel

« Exokernel: MIT ultra-microkernel OS
— all physical hardware names directly exposed to apps (“libOS™)
e avoid imposing inappropriate abstractions
— resources can be shared across protection domains

* thus, protection enforced at level of hardware
— but below level of abstraction (disk page vs. file)
* must map down abstraction semantics safely

 Virtual machine monitors
— protection at same level as Exokernel (hardware)

— no high-level abstractions: expose physical names

* but: physical names are virtualized
— hence no sharing of resources across domains
— avoids complexity of protection below abstraction

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



2. Simple, intuitive sharing model

 Protection can be represented by access control matrix
- a reference monitor enforces policy

— two sources of security flaws: Jetc/pwd | /etc/motd

* badly expressed policy

* bugs in (complex) monitor e RW R,W

— monitor = OS, JRE, ... gribble R

e Virtual machines simplify both!
— simpler reference monitor (narrower abstractions)

— start with no sharing
* relax by allowing share-by-copy over virtual network
e at least some hope of getting this right!

- VMs: applications are principals, not users

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Some alternatives...

 Simplifying policies, learning policies, etc.
— monitor at syscall API level

e techniques (e.g., machine learning) to deduce OK behavior

— appeal to simpler physical metaphors
* WindowBox: virtual windows desktops
— still must enforce isolation at syscall level

e« Supplement existing reference monitors

— Janus, TCP wrappers, software wrappers
e Janus: hard to “compile” high level policies into filters

— Fluke: recursive reference monitors allow policy specialization
* but again, at OS API level

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



3. Private namespaces

All protection domains have private namespaces

— many vulnerabilities come from global namespaces

e aliasing: many names refer to same object

» escalation of privilege: move to different column in matrix

One protection domain cannot name (let alone access) a
resource in another protection domain!

— makes sharing impossible: so, allow virtual ethernet
* single “choke point”, forces copies rather than access

* switching, IDS, firewalls directly applicable
Virtualization is a level of indirection from HW

— transparently insert/change physical devices, migrate code, ...

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Compare with type-safe languages

e Java, Modula-3: apps cannot forge references
— simpler to enforce access control with a reference monitor
* example: no buffer overrun vulnerabilities!

— but, all of these languages come with runtimes to access OS
* security policy to protect this

* same level-below + policy complexity flaws here

 Virtual machine

— type-safety not important
* all nameable resources inside one protection domain

e TCB is entire virtual machine

— abstractions on top of protected resources, not at same level

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Qutline

 Key challenges

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Resource management

« VMM at lowest-level of resource consumption

- possibility of accounting for all resources

e fair-queueing of network, disk bandwidth!
— no Issue of resource principals
VM is only principal
 But, VMM is unaware of abstractions

-~ danger of bad decisions

* readahead, double-paging, etc.

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Virtualization overhead

e Getting rid of virtualization overhead

- non-virtualizable instructions make this really hard
e want to run VM in user-mode to protect monitor
 privileged instructions must throw exception

— then, VM can catch and emulate them
e what if instruction set isn’t built this way?
— e.g., X86 ISA!
— hairy, nasty binary-rewriting + VM tricks to get around

- lesson: pick physical architecture carefully

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



What OS do we run?

e Remember the goal of 100’s of VMs?
- Implies cannot run stock Linux or Win2K

- need to select/modify/build something else

* there be dragons here
e But: protection is below level of OS

— can eliminate protection complexity from OS

e Also: can pick what devices to virtualize
— further simplifies life (get rid of TCP/IP stack?)

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



Some final thoughts

« Once you buy into VMs, a lot comes “for free”

— further relax sharing constraints
e safe access to shared protection domains
— copy-on-write disks, non-persistent disks
— append-only log disks (LFS without cleaner!)

— checkpoint/migration/recovery
e simple to capture entire machine state

e ONCe you can capture it, you can move it, copy it, etc.
— underlying hardware names are virtual!

Detour retreat: June 14, 2001 ©2001, Steven D. Gribble



