
Lightweight Virtual MachinesLightweight Virtual Machines

Steven D. Gribble, Andrew Whitaker

Department of Computer Science and EngineeringDepartment of Computer Science and Engineering

University of WashingtonUniversity of Washington

{{gribble,gribble,andrewandrew}@}@cscs..washingtonwashington..eduedu



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Some context for the next hourSome context for the next hour

•• This is a new research project starting at UWThis is a new research project starting at UW

–– high risk, high rewardhigh risk, high reward

–– significant implementation complexity, possibly rife significant implementation complexity, possibly rife 
with conceptual and design pitfallswith conceptual and design pitfalls

•• This is your chance to have huge impact!This is your chance to have huge impact!

–– tell us if you believe the story, the approach, etc.tell us if you believe the story, the approach, etc.

–– help us pick driving applicationshelp us pick driving applications



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Research agendaResearch agenda

•• Interesting new set of applications is emergingInteresting new set of applications is emerging

–– they all require lightweight protection domainsthey all require lightweight protection domains
• hundreds per physical machine, rapid context switching

• complete isolation between the domains

•• Our research goalOur research goal

–– to design, build, and evaluate one way of doing thisto design, build, and evaluate one way of doing this
• virtual machines

– think VMware, not JVM



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

MetaMeta--outlineoutline

•• Steve Gribble Steve Gribble (the “what”)(the “what”)

–– motivating the applicationsmotivating the applications

–– exploring tradeoffs between methodsexploring tradeoffs between methods

–– identifying core challenges withidentifying core challenges with VM’sVM’s

•• Andrew Whitaker Andrew Whitaker (the “how”)(the “how”)

–– picking an architecture topicking an architecture to virtualizevirtualize

–– resource management strategiesresource management strategies

–– some simple first steps (risk reduction!)some simple first steps (risk reduction!)



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

OutlineOutline

•• IntroductionIntroduction

•• Driving applications and their characteristicsDriving applications and their characteristics

•• Argument for virtual machinesArgument for virtual machines

•• Key challengesKey challenges



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Content delivery: not just static anymoreContent delivery: not just static anymore

•• Recent progression of contentRecent progression of content--delivery architecturesdelivery architectures

–– CDNsCDNs, proxy caches, P2P, …, proxy caches, P2P, …
• premise same for all: replicate static content

–– but: large and increasing fraction of content is dynamicbut: large and increasing fraction of content is dynamic
• 20-40% of web requests are to dynamic content [Wolman99]

• these systems have or soon will “hit the wall”

•• Need to think about distributing dynamic content!Need to think about distributing dynamic content!

–– inject contentinject content--generation code intogeneration code into CDNsCDNs, caches, …, caches, …
• infrastructure must completely distrust this code

• an isolation and security challenge

– existing research doesn’t adequately solve isolation problem



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Content delivery: challenges of scaleContent delivery: challenges of scale

•• High degree of concurrency in caches, serversHigh degree of concurrency in caches, servers

–– lessons from web proxy cacheslessons from web proxy caches
• hundreds/thousands web pages in hot set

• O(100) simultaneous requests at any time

•• Driven byDriven by ZipfianZipfian popularity distributionspopularity distributions

–– 50% of access to 6% sites50% of access to 6% sites

–– 20% of accesses to least20% of accesses to least
popular 50% of sitespopular 50% of sites

–– need fast context switching!need fast context switching!
0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

service #

cu
m

u
la

ti
ve

 p
ro

b
 o

f a
cc

es
si

n
g



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Pushing Internet servicesPushing Internet services

•• Vision for future applications: the network is computerVision for future applications: the network is computer

–– requires scalable, available hosting infrastructurerequires scalable, available hosting infrastructure
• also requires software architecture (same reasons)

•• Barrier to deployment of new services is highBarrier to deployment of new services is high

–– cost of physical equipment largecost of physical equipment large

• >=1 physical machine, rack space, power, admin, etc.

–– stifles grassroots service innovationstifles grassroots service innovation

•• Ideal: push new services into virtual hosting siteIdeal: push new services into virtual hosting site

–– most will be unpopular: must multiplex large number of servicesmost will be unpopular: must multiplex large number of services

–– same isolation, multiplexing, context switching issues as beforesame isolation, multiplexing, context switching issues as before



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Measurement codeMeasurement code

•• Measuring the wideMeasuring the wide--area Internet is interestingarea Internet is interesting

–– Access, NIMI, etc.: sprinkle machines across WANAccess, NIMI, etc.: sprinkle machines across WAN
• researchers share machines for experiments

• upload measurement, analysis code into machines

–– leads to a dilemmaleads to a dilemma

• experiments need to run for long periods

• yet, for isolation, they are currently time-division mux’ed

–– instead: run many experiments concurrentlyinstead: run many experiments concurrently

• need way of safely mux’ing resources

•• Efficiency is key challenge hereEfficiency is key challenge here

–– can’t perturb/reduce throughputcan’t perturb/reduce throughput



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

What do these have in common?What do these have in common?

•• Host must execute Host must execute untrusted untrusted codecode

–– need a watertight protection domain to isolateneed a watertight protection domain to isolate

•• Large degree of concurrency requiredLarge degree of concurrency required

–– implies protection domains must be lightweightimplies protection domains must be lightweight
• so can run hundreds simultaneously

–– implies fast context switching between domainsimplies fast context switching between domains
• Zipf: implies swapping domains in/out at tail

–– implies careful control of resourceimplies careful control of resource mux’ingmux’ing

•• Little/no data sharing between domains is necessaryLittle/no data sharing between domains is necessary

–– possibly not true for CGI’s backed by DB?possibly not true for CGI’s backed by DB?



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

OutlineOutline

•• IntroductionIntroduction

•• Driving applications and their characteristicsDriving applications and their characteristics

•• Argument for virtual machinesArgument for virtual machines

•• Key challengesKey challenges



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Our intended approachOur intended approach

•• VirtualizeVirtualize at the HW interface level using at the HW interface level using virtual virtual 
machine monitorsmachine monitors

hardware

operating system

ap
p

ap
p

ap
p

ap
p…protection,

abstractions,
naming

resources

sharingWhat you’re 
used to



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Our intended approachOur intended approach

•• VirtualizeVirtualize at the HW interface level using at the HW interface level using virtual virtual 
machine monitorsmachine monitors

hardware

…
abstractions

protection,
resources,

naming

Virtual machine 
monitors

O
S

ap
p

O
S

ap
p

O
S

ap
p

O
S

ap
p

virtual machine
monitor



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

WhyWhy VMsVMs??

Three characteristics argue forThree characteristics argue for VMsVMs::

1.1. VM’sVM’s don’t impose fixed, highdon’t impose fixed, high--level level 
abstractionsabstractions

• as compared with OS’s

2.2. VM’sVM’s provide a simple, intuitive sharing modelprovide a simple, intuitive sharing model
• virtual networks between virtual machines

3.3. VM’sVM’s enforce private name spacesenforce private name spaces
• impossible to name resources in another VM



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

1. No fixed, high1. No fixed, high--level abstractionslevel abstractions

•• Fixed abstractions make it hard to express isolationFixed abstractions make it hard to express isolation

–– e.g., virtual address spaces are too coarsee.g., virtual address spaces are too coarse--grainedgrained

–– e.g., DB’s need recorde.g., DB’s need record--level isolation, c.f. file systemlevel isolation, c.f. file system

–– virtual machines: defer abstractions to higher layervirtual machines: defer abstractions to higher layer

• don’t impose single protection interface on apps

•• High level abstractions have “layerHigh level abstractions have “layer--below” problemsbelow” problems

–– semantic gap between abstraction and the resources being semantic gap between abstraction and the resources being 
protected below abstractionprotected below abstraction

• shared file descriptors bypassing FS access control

• packet sniffer capturing shared files through NFS

• forced core dumps reveal passwords



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Compare Compare VMsVMs with with ExokernelExokernel

•• ExokernelExokernel: MIT ultra: MIT ultra--microkernelmicrokernel OSOS
–– all physical hardware names directly exposed to apps (“all physical hardware names directly exposed to apps (“libOSlibOS”)”)

• avoid imposing inappropriate abstractions

–– resources can be shared across protection domainsresources can be shared across protection domains
• thus, protection enforced at level of hardware

– but below level of abstraction (disk page vs. file)

• must map down abstraction semantics safely

•• Virtual machine monitorsVirtual machine monitors
–– protection at same level as protection at same level as Exokernel Exokernel (hardware)(hardware)

–– no highno high--level abstractions: expose physical nameslevel abstractions: expose physical names
• but: physical names are virtualized

– hence no sharing of resources across domains

– avoids complexity of protection below abstraction



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

2. Simple, intuitive sharing model2. Simple, intuitive sharing model

•• Protection can be represented by access control matrixProtection can be represented by access control matrix
–– a reference monitor enforces policya reference monitor enforces policy

–– two sources of security flaws:two sources of security flaws:
• badly expressed policy

• bugs in (complex) monitor

– monitor = OS, JRE, …

•• Virtual machines simplify both!Virtual machines simplify both!
–– simpler reference monitor (narrower abstractions)simpler reference monitor (narrower abstractions)

–– start with start with nono sharingsharing
• relax by allowing share-by-copy over virtual network

• at least some hope of getting this right!

–– VMsVMs: applications are principals, not users: applications are principals, not users

Rgribble

R,WR,Wroot

/etc/motd/etc/pwd



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Some alternatives… Some alternatives… 

•• Simplifying policies, learning policies, etc.Simplifying policies, learning policies, etc.

–– monitor at monitor at syscall syscall API levelAPI level
• techniques (e.g., machine learning) to deduce OK behavior

–– appeal to simpler physical metaphorsappeal to simpler physical metaphors
• WindowBox: virtual windows desktops

– still must enforce isolation at syscall level

•• Supplement existing reference monitorsSupplement existing reference monitors

–– JanusJanus, TCP wrappers, software wrappers, TCP wrappers, software wrappers
• Janus: hard to “compile” high level policies into filters

–– Fluke: recursive reference monitors allow policy specializationFluke: recursive reference monitors allow policy specialization
• but again, at OS API level



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

3. Private namespaces3. Private namespaces

•• All protection domains have private namespacesAll protection domains have private namespaces

–– many vulnerabilities come from global namespacesmany vulnerabilities come from global namespaces
• aliasing: many names refer to same object

• escalation of privilege: move to different column in matrix

•• One protection domain cannot name (let alone access) a One protection domain cannot name (let alone access) a 
resource in another protection domain!resource in another protection domain!

–– makes sharing impossible: so, allow virtual makes sharing impossible: so, allow virtual ethernetethernet
• single “choke point”, forces copies rather than access

• switching, IDS, firewalls directly applicable

•• Virtualization is a level of indirection from HWVirtualization is a level of indirection from HW

–– transparently insert/change physical devices, migrate code, …transparently insert/change physical devices, migrate code, …



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Compare with typeCompare with type--safe languagessafe languages

•• Java, ModulaJava, Modula--3: apps cannot forge references3: apps cannot forge references
–– simpler to enforce access control with a reference monitorsimpler to enforce access control with a reference monitor

• example: no buffer overrun vulnerabilities!

–– but, all of these languages come with runtimes to access OSbut, all of these languages come with runtimes to access OS
• security policy to protect this

• same level-below + policy complexity flaws here

•• Virtual machineVirtual machine
–– typetype--safety not importantsafety not important

• all nameable resources inside one protection domain

• TCB is entire virtual machine

–– abstractions on top of protected resources, not at same levelabstractions on top of protected resources, not at same level



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

OutlineOutline

•• IntroductionIntroduction

•• Driving applications and their characteristicsDriving applications and their characteristics

•• Argument for virtual machinesArgument for virtual machines

•• Key challengesKey challenges



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Resource managementResource management

•• VMM at lowestVMM at lowest--level of resource consumptionlevel of resource consumption

–– possibility of accounting for all resourcespossibility of accounting for all resources
• fair-queueing of network, disk bandwidth!

–– no issue of resource principalsno issue of resource principals
• VM is only principal

•• But, VMM is unaware of abstractionsBut, VMM is unaware of abstractions

–– danger of bad decisionsdanger of bad decisions
• readahead, double-paging, etc.



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Virtualization overheadVirtualization overhead

•• Getting rid of virtualization overheadGetting rid of virtualization overhead

–– nonnon--virtualizable virtualizable instructions make this really hardinstructions make this really hard
• want to run VM in user-mode to protect monitor

• privileged instructions must throw exception

– then, VM can catch and emulate them

• what if instruction set isn’t built this way?

– e.g., x86 ISA!!

– hairy, nasty binary-rewriting + VM tricks to get around

–– lesson: pick physical architecture carefullylesson: pick physical architecture carefully



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

What OS do we run?What OS do we run?

•• Remember the goal of 100’s ofRemember the goal of 100’s of VMsVMs??

–– implies cannot run stock Linux or Win2Kimplies cannot run stock Linux or Win2K

–– need to select/modify/build something elseneed to select/modify/build something else
• there be dragons here

•• But: protection is below level of OSBut: protection is below level of OS

–– can eliminate protection complexity from OScan eliminate protection complexity from OS

•• Also: can pick what devices toAlso: can pick what devices to virtualizevirtualize

–– further simplifies life (get rid of TCP/IP stack?)further simplifies life (get rid of TCP/IP stack?)



Detour retreat: June 14, 2001 ©2001, Steven D. Gribble

Some final thoughtsSome final thoughts

•• Once you buy intoOnce you buy into VMsVMs, a lot comes “for free”, a lot comes “for free”

–– further relax sharing constraintsfurther relax sharing constraints
• safe access to shared protection domains

– copy-on-write disks, non-persistent disks

– append-only log disks (LFS without cleaner!)

–– checkpoint/migration/recoverycheckpoint/migration/recovery
• simple to capture entire machine state

• once you can capture it, you can move it, copy it, etc.

– underlying hardware names are virtual!


