
Performance Isolation:
Sharing and Isolation in Shared-Memory Multiprocessors

Ben Verghese’, Anoop Gupta2g3, and Mendel Rosenblum2

‘Western Research Laboratory, Compaq Computer Corporation, Palo Alto, CA 94301.
*Computer Sys terns Laboratory, Stanford University, Stanford, CA 94305.

3Microsoft Corporation, Redmond, WA 98052.

verghese@pa.dec.com, ag@pepper.stanford.edu, mendel@crissy.stanford.edu

Abstract
Shared-memory multiprocessors (SMPs) are being exten-
sively used as general-purpose servers. The tight coupling of
multiple processors, memory, and I/O provides enormous
computing power in a single system, and enables the effi-
cient sharing of these resources.
The operating systems for these machines (UNIX or Win-
dows NT) provide very few controls for sharing the
resources of the system among the active tasks or users. This
unconstrained sharing model is a serious limitation for a
server because the load placed by one user can adversely
affect other users’ performance in an unpredictable manner.
We show that this lack of isolation is caused by the resource
allocation scheme (or lack thereof) carried over from single-
user workstations. Multi-user multiprocessor systems
require more sophisticated resource management, and we
show how the proposed “performance isolation” scheme can
address the current weaknesses of these systems. We have
implemented performance isolation in the Silicon Graphics
IRIX operating system for three important system resources:
CPU time, memory, and disk bandwidth. Running a number
of workloads we show that our proposed scheme is success-
ful at providing workstation-like isolation under heavy load,
SMP-like latency under light load, and SMP-like throughput
in all cases.

1. Introduction
The emergence of the client-server computing paradigm has
generated new interest in servers. Shared-memory
multiprocessors are being widely used as these servers
because they aggregate a large collection of computing
resource - multiple processors, large amounts of memory,
and I/O - in a tightly-coupled system. These resources can
be efficiently utilized through flexible and automatic
reallocation to accommodate the disparate resource
requirements of applications in compute-server workloads.
However, a compute server often has to serve many masters.
Unrelated jobs belonging to various groupings, such as
different users or projects need to co-exist on the system.
Such an environment requires sophisticated controls in the

Permisslon to make digltal or hard copies of all or part of this work for
personal or classroom use IS granted wtthout fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copses bear this notice and the full citation on the first page.
TO copy otherwIse, to republish. to post on servers or to
redastribute to ksts, requires pcfor specific permnss~on and/or a fee.
ASPLOS VIII lo/98 CA, USA
0 1998 ACM 1.58113.107.0/98/0010...$5.00

operating system to carefully allocate resources to different
tasks, making trade-offs where required to get the benefits of
good isolation and good throughput.

Current operating systems have little support for controlling
the allocation of resources to groups of processes, or for
providing fairness by any abstraction other than individual
processes. With unconstrained sharing and contention for
resources, jobs belonging to one group can severely impact
the performance of jobs belonging to other groups in an
unpredictable manner. The existing controls for fairness
regulate only access to the CPU by a process. There are few
controls for allocating other resources that can affect
performance, such as memory and I/O bandwidth. Memory
allocation is usually not done explicitly (static quotas per
process at best), and allocation of I/O bandwidth is
nonexistent. Resource management needs to be done to
provide fairness to higher-level logical entities, such as
individual users, a group of users, or a group of processes
that comprise a task, not just between competing processes.
A multiprocessor is often a shared resource with implicit or
explicit contracts between users or tasks on how to share the
machine. For example, project A owns a third of the machine
and project B owns two thirds. Such contracts would be very
difficult to implement in the absence of explicit mechanisms
and policies for resource management.’

Current shared-memory systems represent one end of the
spectrum for clustering computing resources. These systems
seem to favor overall throughput at the cost of response time
for individual jobs. This centralized model of computation is
to be contrasted with the distributed network of workstations
model (NOW) [ACP+94] that has implicit isolation because
jobs are run on separate workstations. These systems provide
good response time for an individual’s jobs at the cost of
overall throughput. The workstation solution, being a loosely
coupled system, has a much higher overhead for sharing
resources. Therefore, fine-grain sharing is difficult, and idle
resources can only be allocated at a very coarse granularity.

A possible option to provide isolation is to enforce fixed
quotas per user or task for the different resources. However,

Although we focus on multiprocessors here, we believe that so-
phisticated resource management will become increasingly im-
portant to uniprocessors as well. How resources are prioritized/
segmented between top-level applications, their background anal-
ysis and prefetching tasks, and other time-sensitive tasks raises
similar resource management issues.

181

this method would not allow the sharing of idle resources,
and significantly reduces the throughput and response time
seen on these systems under light-load conditions. Another
possibility is the equivalent of real-time systems with
applications requesting guaranteed resources or deadlines,
and the system guaranteeing this through admission control
based on the availability of resources [Hyd94][Mer97].
However, this is too constrained a system for a general-
purpose server that is to run a large number of unmodified
applications. Finally, there is the highly sophisticated, but
complex, functionality found in mainframe operating
systems (OS390 WLM) that is able to accommodate
different types of application goals, and automatically
manage resource allocation to achieve these goals
[AEE+Y7].

We seek a simple solution that provides isolation without
compromising throughput. This paper presents
“Performance Isolation”, a resource management scheme
for shared-memory multiprocessors. This scheme isolates
processes belonging to a logical entity, such as a user, from
the resource requirements of others, and also preserves the
inherent sharing ability of these machines. The proposed
scheme has been implemented on the Silicon Graphics IRIX
operating system for three important system resources: CPU
time, memory, and disk bandwidth. Running a number of
workloads on this kernel using SimOS, we show that our
proposed scheme is successful at providing isolation for
tasks and efficient sharing of idle resources.

The outline of the rest of the paper is as follows. Section 2.
provides a framework for performance isolation. In
Section 3., we describe the implementation of performance
isolation in the operating system, and discuss the various
implementation issues that arise. In Section 4., we run
different workloads to demonstrate that performance
isolation works. Section 5. discusses related work, and
Section 6. presents our conclusions.

2. A Framework for Performance Isolation
We now build a framework for the performance isolation
model. We will first describe the SPU kernel abstraction that
is the key component for performance isolation. We then
discuss the two main issues: providing isolation between
SPUs and policies for sharing resources between SPUs.

2.1 The Performance Isolation Model
The performance isolation model for shared-memory
multiprocessors essentially partitions the computational
resources of the multiprocessor into multiple flexible units
based on a previously configured contract for sharing the
machine. From a performance and resource allocation
viewpoint the multiprocessor now looks like a collection of
smaller machines.

At the heart of the model is a kernel abstraction called the
Sofkware Performance Unit (SPU), and each of these logical
smaller machines is associated with an SPU. This is not a
static permanent allocation of resources to SPUs as will
become clear soon. SPUs can be created and destroyed

dynamically, or could be suspended when they have no
active processes and awakened at a later time.

The SPU abstraction has three parts:

The first is a criterion for assigning processes to an SPU. This
decides which processes have access to the resources of the
SPU. The performance of a process will be isolated from the
resource requirements of any process that is not associated
with its SPU. However, the SPU does not provide isolation
between processes that are associated with the same SPU. The
desired basis for the grouping of processes can vary greatly,
and is dependent on the environment of the particular machine
and the isolation goals. Some common possibilities are: Indi-
vidual processes, groups of processes representing a task, pro-
cesses belonging to a user, or processes belonging to a group of
users.

The second is the specification of the share of system resources
assigned to the SPU. We are primarily interested in the com-
puting resources that directly affect user performance: CPU
time, memory, and I/O bandwidth (disk, network, etc.). How-
ever, it would be possible to incorporate other resources if
required. There are many possible ways of partitioning
resources between SPUs, such as a fixed fraction of the
machine, or a specified amount of each resource.

The third is a sharing policy. Resources can be lent to other
SPUs, and revoked when needed again by the loaning SPU.
The sharing policy decides when and to whom resources
belonging to an SPU will be allocated when these resources are
idle. There are many possible types of sharing policies, and the
following is a nonexhaustive list:
l Never give up any resources. This will approximate the

case of each SPU being an entirely separate machine with
its share of resources, or the machine being divided up with
fixed quotas; there is no sharing.

l Share all resources with everyone all the time, without con-
sideration for whether the resources are idle or not. This
approximates the behavior of current SMP systems.

l A more interesting possibility is to share only idle
resources with all or a subset of the SPUs that lack suffi-
cient resources and could use the idle ones.

The SPU abstraction is quite versatile and should not be
confused with a naive fixed quota policy that sets hard limits
on resource usage by a single process or a group of
processes. The sharing policy of the SPU abstraction can be
set per SPU to customize the behavior of the system as seen
by the users. The Performance isolation model, which we
discuss in the rest of this thesis, will use the SPU abstraction
with a specific sharing policy to achieve its goals. An SPU
will share idle resources with any SPU that needs the idle
resources. With this sharing policy, the performance
isolation model should achieve the following two
performance goals:

Isolation: If the resource requirements of an SPU are less than
its allocated fraction of the machine, the SPU should see no
degradation in performance, regardless of the load placed on
the system by others.

Sharing: If the resource requirements of an SPU exceeds its
configured share of resources, the SPU should be able to easily
utilize idle resources to improve its response time and through-
put.

182

There are two parts to the solution for implementing the
SPU abstraction for providing performance isolation,
corresponding to the two goals presented above.

2.2 Providing Isolation
A key issue in providing performance isolation is that
current SMP systems do not have the appropriate metrics to
track short-term usage of all resources by processes or

groups of processes, and cannot limit the usage of these
resource by a specific process. In order to provide isolation
between SPUs two new aspects of functionality are needed
in the kernel. First, the utilization of resources by individual
SPUs needed to be tracked. For example, the kernel needs to
maintain a page-use count per SPU, and increment it every
time a memory page is allocated to the SPU. Second,
mechanisms are needed to limit the usage of resources by an
SPU to allocated levels. For example, currently in the SC1
IRIX operating system a request for a page of memory will
fail only if there is no free memory in the system. With
isolation a page request from a process will be denied if the
SPU that owns the process has used its allocation of pages.

A particular problem area in providing isolation is
accounting for resources that are actually shared by multiple
SPUs, or that do not belong to any specific SPU. Examples
of the former are pages of memory accessed simultaneously
by multiple SPUs such as shared library pages or code, and
delayed disk write requests that often contain dirty pages
from multiple processes and multiple SPUs. Examples of
the latter are kernel processes, such as the pager and
swapper daemons and pages used for kernel code and data.

For this problem our current strategy has been to choose the
simplest solutions that seem reasonable. More sophisticated
solutions may easily be considered in the future, if we
encounter instances where these proposed solutions clearly
do not work. To address the above problem we introduce
two default SPUs in the system: kernel, for kernel processes
and memory; and shared for tracking resources used by
multiple SPUs. The cost of memory pages that are
referenced by multiple SPUs is counted in the shared SPU,
and not explicitly allocated to any of the user SPUs.
Memory pages other than those used by the kernel and
shared SPUs are divided among user SPUs. Therefore, the
cost of shared and kernel pages is effectively shared by all
user SPUs. The cost of shared pages could be assigned more
precisely if necessary, but this would incur a larger
overhead. Shared disk writes get scheduled for service in the
shared SPU. The cost of individual non-shared pages in
these write requests is allocated to the appropriate user
SPUs. The kernel SPU has unrestricted access to all
JesouJces.

2.3 Policies for Sharing
The second part of the performance isolation model is the
careful sharing of idle resources between SPUs, based on
the sharing policy feature of the SPU abstraction.
Conceptually, each SPU maintains three resource levels to
implement resource sharing. The first level is the amount of
resources that the SPU is entitled to initially. This level is

decided by the division of system resources based on the
sharing contract for the system. The second level is the
amount of resources that the SPU is allowed to use

currently. The third level is the amount of resources
currently used by the SPU.

Sharing is implemented by changing the allowed level for
SPUs based on resource requirements and availability. In a
system under load where all SPUs are utilizing their share of
the resources, all three levels will be at about the same value
for the SPUs. No sharing will happen. At some point one or
more SPUs may go idle or be under utilized. Their used
level will now be much less than their entitled level,
indicating idle resources. The sharing policy can now
transfer some of these idle resources from the under-utilized
SPUs to the others by increasing the value of the allowed
level for the latter. When the SPUs want their resources
back, the sharing policy will lower the allowed level of the
borrowing SPUs, potentially to the entitled level.

The key factor in making the decision to transfer resources
is the revocation cost for these resources when they are
needed again by the loaning SPU. The isolation of
performance of an SPU can be adversely affected if the
sharing policy is not careful when transferring idle
resources. If the revocation cost were zero, then transferring
all the resources would not be a problem as they could be
instantly revoked when needed. However, most resources
have a non-trivial revocation cost, and this cost plays a part
in deciding when resources are transferred and how much of
the idle resources are transferred. When making sharing
decisions, the policy module needs to ensure that the cost of
revocation does not adversely affect the performance of the
loaning SPU and break isolation.

3. Implementing Performance Isolation
In the previous section we discussed a framework for
implementing performance isolation in terms of providing
isolation and sharing between SPUs. We now describe the
details of our implementation of performance isolation in
the IRIX5.3 kernel from Silicon Graphics. Most of the ideas
in this implementation are not specific to IRIX, and would
apply to other operating systems as well. The system
resources included in the implementation are: CPU time,
memory, and disk bandwidth (as an example of I/O
bandwidth). Though we do not implement performance
isolation for network bandwidth, the techniques we describe
would apply to it as well. Our implementation is based on
the assumption that all resources are to be divided equally
among all the active SPUs, though it will be clear from the
implementation that unequal shares can easily be supported.

For each resource we describe the metrics used to count
usage, the mechanisms put in place to provide isolation,
how these mechanisms differ from the ones currently in
IRIX, and how the sharing policy enables sharing by
reallocating idle resources. For our implementation we
picked reasonable policies and mechanisms that allow us to
clearly demonstrate the effectiveness of performance
isolation. Other mechanisms are also possible for each of

183

the resources, and we will discuss them with related work in
Section 5..

3.1 CPU Time
In IRIX, CPU time is allocated in time slices to processes -
30ms unless the process blocks before that for I/O. A
priority-based scheduling scheme is used in which the
priority of a process drops as it uses CPU time. A CPU
normally picks the runnable process with the highest
priority when scheduling a new process. This scheme
maintains fairness for CPU time at a process level.

Isolation requires a mechanism to provide fairness at the
SPU level, which usually includes more than one process.
On a multiprocessor, CPU time can be allocated either
through time multiplexing or space partitioning of the
CPUs. We chose a hybrid approacht. First, each SPU is
allocated an integral number of CPUs using space
partitioning, depending on its entitlement. If in the division,
fractions of CPUs need to be allocated to SPUs, then time
partitioning is used for the remaining CPUs with the share
of time allocated to an SPU corresponding to the fraction of
the CPU. The SPU to which a CPU is allocated is its home
SPU. Kernel processes can run on any CPU. To provide
isolation the normal priority-based scheduling behavior is
modified by having CPUs select processes only from their
home SPUs when scheduling, thus ensuring that an SPU
will get its share of CPU resources, regardless of the load on
the system. Between processes of the same SPU, the
standard IRIX priority scheduling disciplines apply.

Sharing is implemented by relaxing the SPU ID restriction
when a processor becomes idle. If an SPU is lightly loaded,
one or more processors belonging to this SPU may be idle.
If a processor cannot find a process from its home SPU, it is
allowed to consider processes from other SPUs. Currently,
the process with the highest priority is chosen. As a result,
the SPU getting the idle processor is not explicitly chosen,
but the process with the highest priority is likely to be one
from a relatively heavily-loaded SPU. An SPU could be
explicitly picked if the home SPU’s sharing policy indicated
a preference.

Processors that have been loaned to SPUs are tracked. If a
process from the home SPU now becomes runnable, and
there are no allocated processors in the home SPU available
to run this process, then the processor loan is revoked. In our
policy, the revocation of the CPU happens either at the next
clock tick interrupt (every 10 milliseconds), or when the
process voluntarily enters the kernel. Therefore the

’ Our choice of a hybrid scheduling policy, favoring space parti-
tioning, fits well with our model of partitioning the machine,
based on the assumption that there will be fewer active SPUs than
CPUs. If this assumption does not hold, a more explicit time-par-
titioning policy may be appropriate. Also, parallel applications
that use a space partitioning policy [ABL+91][Teo72] can be eas-
ily accommodated in our current scheme. Accommodating gang-
scheduled [Ous82] parallel applications would require some
modifications.

maximum revocation latency for a CPU is 10 milliseconds.
Another possibility would be to send an inter-processor
interrupt (IPI) to get the processor back sooner. This might
be needed to provide response time performance isolation
guarantees to interactive processes.

There are other hidden costs to reallocating CPUs, such as
cache pollution. A more sophisticated implementation of
the sharing policy could try to reduce these costs by
preventing frequent reallocation of CPUs for sharing, if the
algorithm detects that the allocation is being revoked
frequently.

3.2 Memory
The IRIX5.3 kernel has very few controls for memory
allocation. It has a configurable limit to the total virtual
memory a process can allocate. It also tries to place a fuzzy
limit on the size of actual physical memory that a process
can use. The problem is that these limits are per-process,
and cannot provide the strict isolation that our model
requires. Being essentially fixed quotas per-process, they
may actually inhibit sharing of idle resources in the system.

Isolation and sharing for physical memory closely follows
the method outlined in Section 2.3, keeping three counts of
pages for each SPU - entitled, allowed and used. The page
allocation function in the kernel is augmented to record the
SPU ID of the process requesting the page, and to keep a
count of the pages used by each SPU. In addition to regular
code and data pages, SPU memory usage also includes
pages used indirectly in the kernel on behalf of an SPU,
such as the file buffer cache and file meta-data. Memory
pages are conceptually space-partitioned among the SPUs,
and the entitled count represents the initial share of memory
for an SPU. Isolation between SPUs is enforced by not
allowing an SPU to use more pages than the allowed limit.
Corresponding changes are made to the paging and
swapping functions to make them aware of SPUs and per-
SPU memory limits

Sharing of idle memory is implemented by changing the
allowed limit for SPUs. The SPU page usage counts are
checked periodically to find SPUs with idle pages and SPUs
that are under memory pressure. The sharing policy
redistributes the excess pages in the system to the SPUs that
are low on memory by increasing their allowed limits. The
memory re-allocation is temporary, and can be reset if the
memory situation in the lending or borrowing SPUs
changes.

Excess pages are calculated as the total idle pages in the
system less a small number of pages that are kept free. The
small number of free pages is called the Reserve
Threshold. The Reserve Threshold is needed to hide the
revocation cost for memory, which is the time to reclaim
any pages that have been lent to other SPUs. The revocation
cost for pages of memory can be high, especially if they are
dirty, because the dirty data will need to be written to disk
before the page can be given back. The Reserve Threshold
reduces the chance of a loaning SPU incorrectly being
denied a page temporarily. The Reserve Threshold is

184

configurable, and we chose 8% of the total memory. This is
the value that IRIX uses to decide if it is running low on
memory.

A particular problem is tracking and accounting for pages
that might be accessed by multiple SPUs, as mentioned in
Section 2.2. When a page is first accessed, it is marked with
the SPU ID of the accessing process. On a subsequent
access by a different SPU before the page is freed, the page
will be marked as a shared page (SPU ID of the shared
SPU). The SPU ID for the page is reset when the page is
finally freed. The cost of these shared pages is assigned to
the shared SPU. Similarly the cost of pages used by the
kernel is assigned to the kernel SPU. Only the remaining
pages are actually divided among the SPUs based on their
entitled share of memory. The allocation of pages to SPUs is
periodically updated to account for changes in the usage of
the shared and kernel SPUs.

3.3 Disk Bandwidth
IRIX5.3 schedules disk requests based only on the current
head position of the disk using the standard C-SCAN
algorithm [Teo72]. In the C-SCAN algorithm the
outstanding disk requests are sorted by block number and
serviced in order as the disk head sweeps from the first to
the last sector on the disk. When the head reaches the
request closest to the end of the disk, it then goes back to the
beginning and starts again. This technique reduces the disk-
head seek component of latency and prevents starvation.
The process requesting the disk operation is not a factor in
the algorithm, and there is total lack of isolation between
SPUs. The sectors of a single file are often laid out
contiguously on the disk. Therefore a read or write to a large
file (e.g. a core dump) could monopolize the disk, causing
all requests from one SPU to a file to be serviced before
requests from other SPUs are scheduled.

To provide isolation we need to account for the disk
bandwidth used by SPUs, and incorporate this information
into the decision process for scheduling requests for the
disk. We encountered a few difficulties in providing
isolation for disk bandwidth. First, disk requests have
variable sizes (one or more sectors), and breaking up
requests into single sector operations would be inefficient.
This implies that the granularity of allocation of bandwidth
to SPUs will be in variable-size chunks. Therefore it is not
enough to just count requests, rather the size of the request
needs to be accounted for. Our metric for disk bandwidth is
sectors transferred per second.

Second, the writes to disks are mostly done by system
daemons that are flushing file-buffer-cache data or page-
frame data. Therefore, these write requests contain pages
belonging to multiple SPUs. Our implementation schedules
these shared write requests as part of the shared SPU, which
is given the lowest priority. Once the shared write request is
done, the individual pages are charged to the appropriate
user SPUs.

Third, disk bandwidth is a rate, and as such measuring the
instantaneous rate is not possible. Therefore it is

approximated by counting the total sectors transferred and
decaying this count periodically. The decay period is
configurable, and we currently decay the count by half every
500 milliseconds. A finer grain decay of the count would
better approximate an instantaneous rate, but would have a
higher overhead to maintain. This count of sectors
transferred represents the bandwidth used by each SPU, and
is kept for each disk.

Disk requests can incur a considerable latency for the disk
head to seek to the appropriate spot on the disk.
Implementing strict isolation requires a round-robin-type
scheduling of requests by SPU based on bandwidth shares
of each of the SPUs. However, completely ignoring the
current disk-head position would result in poor throughput
because of excessive delays caused by the extra seek time
(see results in Section 4.5). Therefore, performance
isolation employs a compromise that incorporates both disk-
head position and a fairness criteria when making a
scheduling decision.

In our policy, disk requests are scheduled based on the head
position as long as all SPUs with active disk requests satisfy
the fairness criteria. A SPU fails the fairness criteria if its
bandwidth usage relative to its bandwidth share (current
count of sectors/bandwidth share) exceeds the average value
of all SPUs by a threshold (the BW difference threshold).
Once an SPU fails the fairness criteria it is denied access to
the disk until there are no more queued requests, or it once
again passes the fairness criteria because other SPUs get
their share of disk bandwidth. The fairness criteria is
checked after each disk request. The choice of the BW
difference threshold allows a trade-off. Smaller values
imply better isolation, with a choice of zero resulting in
round-robin scheduling. Larger values imply smaller seek
times, and a very large value results in the normal disk-
head-position scheduling.

Sharing happens naturally because an SPU cannot fail the
fairness criterion if no other SPU has active requests. The
revocation cost for the disk bandwidth resource is the time
to finish any currently outstanding request, and for the disk
head to scan to the desired position. Therefore, if a disk is
shared then an SPU with high disk utilization can affect the
performance of another SPU using the same disk. However,
we will show that performance isolation can provide
fairness and considerably reduce the impact of such shared
access.

3.4 Shared Kernel Resources
In addition to the physical resources discussed above, there
are shared kernel structures that are accessed from multiple
processors and must be considered in the implementation of
the performance isolation model. Additional stall time and
contention for spinlocks and semaphores protecting these
resources is a potential source of problems. In addition to
straight contention, a high load SPU starved of resources
and holding an important semaphore could block a process
from a light load SPU. This could affect the ability of the
kernel to provide isolation between SPUs. This problem is

185

Work System SPU
oad Parameters Application Configuration

I

T. 4BLE . The workloads used for the performance results.
For each workload we show the relevant system parameters, the
applications used in the workload, and the SPU configuration for
performance isolation.

8 CPUS, Multiple
44Mbytes mem Pmake jobs
separate fast disks (two parallel

compiles each)

8 CPUs, Ocean (Cway)
64Mbytes mem, 3 Flashlite
separate fast disks 3 VCS

4 CPUS, Multiple
16 Mbytes mem, Pmake jobs
separate fast disks (four parallel

compiles each)

2 CPUS, Pmake and
44 Mbytes mem, File copy
shared HP97560

Balanced:
8 SPUs (1 job)
Unbalanced:
4 SPUs (1 job),
4 SPUs (2 jobs)

2 SPUs:
1 SPU Ocean,
1SPU Flashlite
and VCS

Balanced:
2 SPUs (1 job)
Unbalanced:
1 SPU (1 job),
1 SPU (2 jobs)

1 SPU pmake,
1 SPU file copy

similar to the well-studied priority inversion problem, and
the solution is similar [SRL90]. A process blocking on a
semaphore should transfer its resources to the process
holding the semaphore until the semaphore is released. The
severity of these problems scales with the number of
processors and the kernel activity of the workload. However,
most of these problems are not specific to performance
isolation, and need to be addressed when designing scalable
multiprocessor operating systems.

We encountered and fixed two such semaphore problem in
our implementation of performance isolation. The first was
the inode-lock semaphore that protects inodes in the file
system. The contention for the root inode has the potential
to completely break performance isolation. We changed this
from a mutual exclusion semaphore to a multiple-readers/
one-writer semaphore because the dominant operation is
lookups to the inode. We also reduced the granularity of the
page-insert-lock semaphore that protects the
mapping from file vnode and offset to pages of physical
memory. These two changes were required to provide
performance isolation, but also improved the response time
of the base IRIX system. The improvement in response time
was as much as 20-30% on a four processor system for
some workloads.

4. Performance Results
This section demonstrates how well performance isolation
is able to achieve its twin objectives of isolation and sharing.
We will run a number of workloads using our
implementation of performance isolation (PIso), as
described in Section 3.. The workloads are summarized in

Configuration

Fixed Quota
(Quo)

Performance Isolation
(PISO)

SMP operating system
W’W I

:iol

Unconstrained sharing with
no isolation. (Good sharing)

a schemes for MPs. Each work- i ABLE 2. Resource alloca!
IO lad is run with three dttferent resource allocation schemes, Per-
formance Isolation (PIso). Fixed Quotas (Quo), and IRIX5.3
representative of current shared-memory operating systems
(SMP).

Description

Fixed quota for each SPU
with no sharing. (Good isola-
tion)

Performance isolation with
policies for isolation and
sharing.

Table 1. Each workload has jobs from multiple SPUs. To
clearly demonstrate the effectiveness of performance
isolation, we will also run each workload on two other
resource allocation schemes, as shown in Table 2. The first
uses fixed quotas (Quo) to statically allocate the resources
on the system to the different SPUs, thus providing good
isolation, but no sharing. The second is unmodified1
IRIX5.3 (SMP) that provides only the unconstrained
sharing of resources as seen in current shared-memory
multiprocessors, but no isolation. For each workload, we
will demonstrate that performance isolation is able to
provide isolation comparable to fixed quotas and good
throughput through careful sharing of resources comparable
to SMP.

4.1 Experimental Environment
We implemented the performance isolation model in the
IRIX 5.3 kernel from Silicon Graphics as described in the
previous section. This is an SMP kernel designed to run on
bus-based machines. The hardware used is an eight
processor bus-based shared-memory machine simulated
using SimOS [Her981 [RHW+95], a complete machine
simulator, configured to model the CHALLENGE family of
SMP machines from Silicon Graphics. The relevant
characteristics of the machine are as follows: 300 MHz
R4000 CPUs, 1Mbyte L2 cache with 128 byte line size,
nominal latency to memory on a secondary cache miss 500
nanoseconds. The main memory size used was varied for
the different workloads. The disk model used for some of
the runs is based on a HP97560 disk [KTR94]. All SPUs
access separate disks, except in the fourth workload that
shows performance isolation for disk bandwidth.

We run our experiments on SimOS instead of a real machine
because SimOS allows us to easily configure different
systems; change the number of processors, the size of main
memory, and the number of disks. This was very important

’ The IRIX5.3 kernel used for these experiments has been modified
to include the semaphore fixes described in Section 2.2.4, and
therefore has better performance than the standard IRlX5.3 ker-
nel.

186

SPU# 1 2 3 4 5 6 7 8

Balanced
Total 8 jobs

spU#l 2 3 4 5 6 7 8

Unbalanced
Total 12 jobs

FIGURE 1. SPU configurations for the Pmake8 workload.
The figure shows the distribution of jobs to SPUs in the balanced
and unbalanced configurations for the Pmake8 workload.

for the results that we show in this section. SimOS also
provides good support for kernel debugging and statistics
collection, that would be quite difficult on a real system.

4.2 Experiments Using the PmakeS Workload
The first workload consists of a number of pmake jobs as
described in Table 1. There are eight SPUs for performance
isolation corresponding to eight different users on an eight-
way multiprocessor. The hardware resources are shared
equally between the eight SPUs. The sharing policy is to
share all idle resources with any of the other SPUs that need
resources.

We consider two different scenarios for the distribution of
processes to SPUs as shown in Figure 1. The first is a
balanced configuration with eight jobs, one per SPU for
performance isolation. This is our base configuration, and it
should not be affected by isolation or sharing. The second is
an unbalanced configuration where four SPUs (1 - 4) run
one job each, and the other four SPUs (5 - 8) run two jobs
each. SPUs 1 - 4 should see a benefit from being isolated
from the more heavily loaded SPUs 5 - 8. On the other hand,
SPUs 5 - 8 should see some benefit from sharing of
resources that may be idle in SPUs 1 - 4. This workload will
therefore be used to demonstrate performance isolation for
both processor and memory resources.

4.2.1 Isolation
We will first study how well performance isolation can
isolate SPUs from changes in system load. To do this we
compare the performance of the jobs in SPUs l-4 for the
balanced and unbalanced configurations. The unbalanced
configuration has higher system load because of the
additional jobs in SPUs 5 - 8. In a system with good
isolation, the performance of the jobs in SPUs 1 - 4 should
not change. Figure 2 shows the average response time for
these jobs in the balanced and unbalanced configurations,
normalized to that of SMP in the balanced configuration.

Performance Isolation (PIso) is able to keep the
performance of jobs in the lightly-loaded SPUs (1 - 4) the
same in the balanced and unbalance configurations, despite
the increase in overall system load in the unbalanced
configuration. It does this by allocating resources based on
SPUs, and effectively isolating jobs in an SPU from the load
of jobs in other SPUs. Performance Isolation (PIso) is able
to achieve the same level of isolation for jobs as the fixed
quotas scheme (Quo), which is the ideal for providing

';;
5

t

156
E 150

I=

0 U 0 u B U

SMP QUO Plso
FIGURE 2. Effect of Isolation in the Pmakel workload. Aver-
age response time for jobs in the lightly-loaded SPUs (l-4) for
the balanced (B) and unbalanced (U) configurations normalized to
the SMP time in the balanced configuration.

isolation

In contrast, the regular SMP kernel (SMP) is unable to
provide any isolation between jobs. The response time for
the jobs in SPUs 1 - 4 increases by 56% when going from
the balanced configuration with 8 jobs to the unbalanced
configuration with 12 jobs. This kernel does not
differentiate between the jobs, and gives all jobs
approximately the same share of resources. Therefore, there
is an increase in the response time of all jobs including those
of the lightly-loaded SPUs (1 - 4).

4.2.2 Resource Sharing
We consider the performance of the heavily-loaded SPUs (5
- 8) in the unbalanced configuration to study the controlled-
sharing aspect of performance isolation. The performance
of the jobs in these SPUs is shown in Figure 3. The average
response time is shown for each of SMP, Quo, and PIso
normalized to the SMP performance in the balanced
configuration.

The SMP kernel represents the best case for sharing and
throughput. The jobs in SPUs 5 - 8 do well under SMP
because they are able to take up more than their “fair share”
of resources. This scheme treats all jobs equally, and gives
them all the same level of resources. As a result the response

T 200 -
5

187

E”
i=

156
150- 146

P c

H
2 loo-

TJ
w zz.
g 50-
b
z

0
SMP Quo Plso

FIGURE 3. Effect of resource sharing in the Pmake8
workload. Response time for jobs in the heavily-loaded SPUs
(5-S) for the unbalanced (12 jobs) configuration normalized to
the SMP time in the balanced configuration.

187

ISPUl
4 process OCEAN
Half the machine
(4 processors)

SPU 2
3 VCS & # Flashlit
Half the machine
(4 processors)

FIGURE 4. SPU configurations for the CPU Isolation
workload. The CPU isolation workload has two SPUs each of
which gets half the machine. SPU 1 runs a four processor parallel
Oceanapplication. SPU 2 runs three copies df VCS a&l three
cooies of Flashlite. SPU 2 has more CPU load than SPU 1.

time of the jobs in these SPUs increases by only 56% even
though their resource requirements double.

Fixed quotas (Quo) are unable to do resource sharing. There
are resources idle in SPUs 1 - 4, but they cannot be used by
SPUs 5 - 8 because of the static fixed quotas. Therefore,
Quo increases the response time for these jobs by 87%,
performing much worse than the SMP case.

In contrast, performance isolation is able to provide
controlled sharing of resources in addition to isolation
between SPUs. The performance of these jobs with PIso is
as good as that with SMP’. Performance isolation achieves
this by carefully allowing these heavily-loaded SPUs to
utilize resources that are idle in the lightly-loaded SPUs (1 -
4). From the isolation numbers for SPUs 1 - 4 in Figure 2,
we know that this sharing is achieved without breaking
isolation for the lightly-loaded SPUs.

4.3 Experiments Using the CPU Isolation
Workload

The CPU isolation workload consists of compute-intensive
scientific and engineering jobs with kernel time only at the
start-up phase. The structure of the workload is shown in
Figure 4. The workload has a total of ten processes on eight
processors, and it will be used to demonstrate CPU
isolation. There is adequate memory for all applications and
so memory is not an issue for performance. For the
performance isolation runs there are two SPUs
corresponding to two users. Each SPU is allocated four
CPUs. One SPU runs the four process Ocean application,
and the other SPU runs the three Flashlite and three VCS
jobs. Figure 5 shows the results for this workload. Response
time numbers are averages of all the jobs of a type
normalized to the SMP case.

For isolation we focus on the performance of Ocean, which
runs in the SPU with a lighter load as it has four processors
for four processes. It should benefit from isolation. For the

’ Actually, the response time for PIso is a little better than that of
SMP. From a pure CPU-scheduling viewpoint, they should have
performed about the same. The difference is a result of the effect
of different amounts of memory available during the run. This
happens because the light-load SPUs finish early, and they re-
lease memory in addition to CPUs. This memory then becomes
available to the heavy-load SPUs. In the SMP case all the jobs are
equal, and finish at about the same time, using their share of mem-
ory till the end.

”

SMP Quo PISO SMP Quo PISO SMP Quo Pk.0

Ocean Flashlite vcs

FIGURE 5. Response times for a compute intensive
workload. For performance isolation, Ocean runs in one SPU
(four processes on four processors) and all the Flashlite and
VCS jobs in another (six processes on 4 processors). The
response time (latency) shown is the average for all jobs of a
type, and is normalized to that for the SMP case.

Ocean processes, performance isolation (PIso) is able to
improve the response time compared to SMP. PIso does this
by isolating the processes within an SPU, preventing
interference from the other applications. In the SMP
configuration, the Ocean processes run slower because all
the processes are treated equally. Therefore Ocean gets less
than its “fair share” of CPU time, and sees interference from
the other processes. Fixed quotas (Quo) the ideal case for
isolation does a little better than PIso.

For sharing we focus on the Flashlite and VCS processes
that are running in the SPU with heavier load as there is six
processes running on four processors. SMP is the ideal for
sharing of resources. The VCS and Flashlite processes
perform significantly better with Performance Isolation
(PIso) than with Fixed quotas (Quo). Performance Isolation
achieves this by carefully utilizing CPU resources that
would have been idle in the Ocean SPU, in such a way as to
not affect isolation for the Ocean processes. Performance
isolation (PIso) is also able to keep the performance of the
VCS and Flashlite processes comparable to that of the SMP
configuration in this case. Because the workloads are
dissimilar this last result will not generally be the case, and
will be dependent on the relative durations of the
applications.

4.4 Experiments Using the Memory Isolation
Workload

The memory isolation workload will highlight performance
isolation for main memory. This workload and the
experiments are similar to that of the Pmake8 workload, but
with a focus on memory. The structure of this workload is
shown in Figure 6. There are two SPUs on a four processor
system. The total memory size is deliberately made small
(16 Mbytes). This memory is enough to run one job in each
SPU, but leads to memory pressure in a SPU with two jobs.
The results highlighting isolation and sharing are shown in
Figure 7. The graphs are similar to the ones for the Pmake8
workload, and can be interpreted similarly.

The effect of providing isolation is illustrated by the lower
graph that shows the performance of the job in SPUl in the
balanced and unbalanced configurations. Performance

188

SPUl SPUP

BALANCED
Total 2 jobs

p-qq

SPUl SPU2

UNBALANCED

El
2Job

Total 3 jobs

FIGURE 6. SPU configurations for the memory-isolation
workload. The figure shows the distribution of jobs to SPUs in
the balanced and unbalanced configurations for the memory-iso-
lation workload.

isolation is able to provide isolation to maintain
performance as the background system load increases. Only
a 13% decrease in performance compared to the SMP case
of 45% decrease. SMP treats all processes the same,
resulting in less resources and lower performance for the
processes of SPU 1 as system load increases.

The effect of sharing is illustrated by the upper graph that
shows the performance of the jobs in SPU2 in the
unbalanced configuration. The loss in performance with
fixed quotas is large, 145% decrease in performance
compared to the balanced configuration. A 100% reduction
in performance is accounted for by CPU time because there
are two jobs instead of one. The additional 45% is because
of the memory limitation when running two jobs in one SPU
without sharing. Performance isolation through the careful
sharing of resources - memory and CPU in this case -
delivers significantly better performance, close to the SMP
case.

4.5 Experiments Using the Disk Bandwidth
Isolation Workload

We demonstrate the effect of performance isolation on disk
bandwidth using two different I/O intensive workloads. For
these runs we use the disk model based on the HP97560
disk. To reduce the length of the simulation runs we use a
scaling factor of two for the disk model, i.e., the model has
half the seek latency of the regular disk. We also make sure
that the file buffer caches are cold for these experiments. To
keep the experiment simple, the machine is a two-way
multiprocessor.

The first workload (pmake-copy) has two SPUs, one
running a pmake job, and the other a process copying a large
file (20Mbytes). A single disk contains both the source and
results of the pmake, and the source and destination file of
the copy. The pmake makes a total of 300 requests to the
disk, and these are not all contiguous as they access multiple
files and have many repeated writes of meta-data to a single
sector. The copy makes a total of 1050 requests to the disk.
These are mostly contiguous sectors as they are reading and
writing large files. There are multiple outstanding reads
because of read-ahead by the kernel. The buffer cache fills
up causing writes to the disk.

The disk-request scheduling algorithm in IRIX 5.3 is
optimized for throughput as was described in Section 3.3.

SMP Quo Plso

Isolation

”

B U B U B U

SMP QUO Plso

FIGURE 7. Performance Isolation for a memory-limited
workload. The graph at the bottom shows the effects of provid-
ing isolation for SPUl that runs 1 job in both the balanced (B)
and the unbalanced (U) configuration. The graph on the top
shows the effect of resource sharing for SPU2 in the unbalanced
configuration running two jobs. T6e response time (latency) for
all iobs are shown normalized to that of the balanced SMP case.

Its primary consideration is to reduce disk seek latency.
Therefore, it considers only the current head position and
the sector number of the requests when scheduling. As a
result, the reads and writes of the copy that are to
contiguous sectors, can lock out the more random requests
from the pmake. This locking out of other requests is the
same behavior that users sometimes observer when a large
core file is dumped to disk.

To show the effect of all the issues and how performance
isolation is able to deal with them, we consider three
different policies for scheduling disk requests for the
experimental runs.

Pos: The standard head-position based scheduling, currently in
IRIX.

Iso: This a blind performance isolation policy. This policy
ignores head position, and only strives to provide fairness for
disk bandwidth to the SPUs.

PIso: The performance isolation policy described in
Section 2.2.3. This policy gives weight to both isolation and
the head position when scheduling requests. The goal is to bal-
ance fairness of bandwidth and effective throughput to the
disk.

The results for the pmake-copy workload for the three cases
are shown in Table 3. The performance isolation policy
(PIso), by incorporating fairness, significantly reduces the
response time for the pmake job (39%). In the regular IRIX
case (Pas), the copy job was able to lock out the pmake

189

TABLE 3. The effect of performance isolation on a disk-
limited workload. The pmake-copy workload consists of two
SPUs, one a pmake process (Pmk) and the other a large (20
Mbyte) tile copy (Cpy) to the same disk as the pmake. The
response time and the average wait time per request for each job
is given, along with the average disk latency.

requests from the disk, signilicantly slowing down the
pmake job. The fairness provided by PIso can be seen in the
significantly lower average wait time for the requests from
pmake. These requests now do not have to wait for all copy
requests to be processed. For the pmake job, the average
time a request spends waiting in the disk queue decreases by
76%. Performance isolation, by incorporating head-position
information in the scheduling decision, does not
significantly change the average seek latency for the disk.
The copy job, as expected, does see a reduction in
performance (23%).

The blind performance isolation policy (Iso) that ignores
head position is also able to improve fairness, and
consequently the response time for the pmake. In this
workload its performance is similar to the performance
isolation policy because the pmake makes fairly irregular
requests, therefore ignoring disk-head position does not
result in a large penalty. However this is not always true, and
completely ignoring disk-head scheduling could lead to
reduced performance.

The second workload (big-and small-copy) will illustrate
the importance of maintaining disk-head position as a factor
in the scheduling decision. In this case also there are two
SPUs, one with a process copying a small file (500 Kbytes),
and the other with a process copying a larger file (5
Mbytes). Both jobs in this workload can benefit from disk-
head position scheduling because they are both accessing
contiguous sectors on disk in a regular manner. The results
of the experiment are shown in Table 4.

The big difference between the two workloads is that in this
workload, the smart performance isolation policy (PIso) is
able to significantly outperform the blind one (Iso). In IRIX
(Pos), the larger copy by happening to issue requests to the
disk earlier than the smaller copy, is able to lock out the
requests of the smaller copy. Both the PIso and Iso policies
provide fairness, improving the response time of the small
copy and allowing it to finish sooner than the larger one.
However, the PIso policy provides better response times for
both processes as compared to the Iso policy because it
incorporates head-position information also. The average
seek latency per request for the PIso policy is about the

Response Avg. Wait
time (set) Time (ms) Avg.

Latency
Conf Small Big Small Big (ms)

Pos 0.93 0.81 155.8 12.1 6.4

Is0 0.56 1.22 68.9 23.7 8.2

PISO 0.28 0.96 31.9 16.6 6.6

TABLE 4. The advantage of considering both head-position
and fairness. The big-and-small-copy workload consists of two
processes copying files, one a small SOOKbyte file (Small) and
the other a larger 5 Mbyte file (Big). The response time and the
average wait time per request for each job is given, along with
the average disk latency.

same as the IRIX position-only scheduling policy (Pos). The
Iso policy pays almost a 30% increase in average seek
latency. The average time a request spends waiting in the
disk queue decreases from Iso to Piso for both the small and
the large copy, 54% for the former and 30% for the latter.

5. Related Work
The closest work to performance isolation is in the IBM
mainframe space. The Workload Manager (WLM)
functionality [AEE+97] of the IBM OS390 operating
system is extremely sophisticated, and allows the
specification of high-level performance goals and an
importance value for these goals. These goals can be of the
form of desired response times for tasks or transactions or
speed of execution (velocity) for batch jobs. The system
continually monitors resource usage and application
performance, and uses this information to readjust resource
allocation to meet the specified goals. WLM also works
across a cluster of machines and in client-server
environments. However, to be successful, such a system
requires fairly close coupling with applications to recognize
entities such as transactions, clients and their corresponding
servers, etc. It also requires a good apriori knowledge of the
applications to be controlled, so that acceptable goals can be
specified. These conditions are probably normal in the
mainframe world.

Our idea of performance isolation has a different
“philosophy” with more modest goals, addresses a more
chaotic environment, and is simpler to implement. It only
guarantees isolation not performance, i.e., a minimum level
of resources which can be used by an SPU. The task load
placed on an SPU decides the resulting performance.
Performance isolation requires only minimal static
configuration and is targeted at general-purpose servers
where the tasks a user may run could be unknown. It should
be noted that the underlying controls in the OS390 systems
seem to be sufficient to implement performance isolation
should it be desired.

Other than the above mentioned OS390 work, performance
isolation has not been really studied for general-purpose
servers. The SPU kernel abstraction that explicitly assigns
the machine resources to groups of processes and enables

190

different sharing policies, makes performance a first-class
kernel citizen similar to address-space protection as
provided by the virtual memory system. Previous work in
resource allocation has taken a piecemeal approach,
focussing only on allocating individual resources (mainly
CPU time) or concerned only with individual processes.
What has been lacking in these piece-meal solutions is a
comprehensive solution that encompasses all resources that
can impact application performance, and is able to deal with
arbitrary groups of processes. While most other work has
been for uniprocessors only, we specifically target shared-
memory multiprocessors, where the problems from
interference are more acute.

We now describe some of the other techniques that have
been proposed for the allocation of individual resources.
Waldspurger [Wa195] demonstrates stride scheduling, a
technique for providing proportional-share resource
management for a variety of computing resources, including
CPU, memory, disk and network bandwidth. They do not
consider an unified solution that accommodates all the
resources, and their solutions are only proposed for
uniprocessors, not multiprocessors. Their work is the only
one to attempt at fairness for disk bandwidth allocation.
Using simulations they show that for certain limited
workloads their “funding delay cost” model for scheduling
disk requests can achieve fairness. Our implementation that
balances head position and fairness is different and more
generally applicable. They provide a real implementation
only for the CPU time resource, and the analysis for other
resources is done using simple simulations. An important
contribution of our work is a real implementation of all the
mechanisms and policies described.

A number of studies have considered fairness when
allocating a single resource. Most of these studies have
concentrated on CPU scheduling [Hen84][KaL88]. An
extension to [KaL88], the SHARE11 resource management
tool [Sof96] also assigns fixed quoruas for virtual memory
and other non-performance related resources such as disk
space. A few proposals consider fairness for memory
allocation. [Cus93] describes the scheme used to allocate
memory to processes in Windows NT. This scheme consists
of assigning shares of pages to individual processes,
changing these shares dynamically based on page-fault
rates, and a local page replacement policy. They operate at
process level, and provide no support for grouping
processes. [HaC] have a proposal for allocating memory and
paging bandwidth to disk using a market approach. They
assume that there are enough processors, so CPU time is not
an issue they consider. Their unit of fairness is again
individual processes.

Though we do not discuss performance isolation for
network bandwidth, the implementation would be similar to
that of disk bandwidth, without the complication of head
position. Stride scheduling is used in [Wa195] to study
fairness for network bandwidth by changing the order of
service from FCFS. Also, Druschel and Banga [DrB96]
implement a scheme called lazy receiver processing (LRP)

to provide fairness for network bandwidth.

The Stealth Distributed Scheduler [KrC91] implements
isolation goals similar to ours in a limited sense, in the
context of distributed systems when scheduling foreign
processes on a user’s workstation. They solve the simpler
problem of preserving the performance of a single class 01
higher priority “local” processes by pre-empting resources
from “foreign” processes.

Our work is also different from the whole class of real-time
systems because these systems primarily use resource
specification and admission control as a means to provide
hard guarantees to jobs. Performance isolation does not
require per-application resource specification, and does not
use admission control because it only guarantees a certain
level of resources, not response times or deadlines. At a
high level, our SPU concept is similar to that of resource
reserves used in the real-time system described in [Mer97].

6. Concluding Remarks
The tight coupling of processors, memory, and I/O in
shared-memory multiprocessors enables SMP operating
systems to efficiently share resources. There has however
been a popular perception that unlike workstations, SMP
kernels (such as UNIX or Windows NT) on commodity
shared-memory multiprocessors cannot isolate the
performance of a user or a group of processes from the load
placed on the system by others. This work demonstrates that
with better resource allocation policies and mechanisms a
shared-memory multiprocessor server can provide
workstation-like isolation in a heavily loaded system and
maintain the benefits of resource sharing of SMPs.

Performance isolation replaces the process-only CPU-
centric control over resource sharing found in current SMP
operating systems, and gives users or tasks significantly
better control over the performance they can expect when
utilizing a shared machine. Groups of processes are isolated
from the background load on the system, and are guaranteed
a fixed share of the machine’s resources based on pre-
configured contracts or agreements. Performance isolation
also maintains good throughput by carefully reallocating
under-utilized resources to processes that might need them.

To implement performance isolation, we introduce a kernel
abstraction called the Software Performance Unit (SPU).
The SPU associates computing resources on the system with
groups of processes that are entitled to these resources, and
restricts the use of these resources to the owning processes.
The SPU is the unit of isolation, and provides a powerful
mechanism to enable different contracts between users or
services for sharing a larger machine. Each SPU has
associated with it a sharing policy that decides how and
when resources belonging to the SPU may be shared with
other SPUs.

We implement performance isolation in the IRIX5.3 kernel
from Silicon Graphics for the CPU, memory and disk
bandwidth resources of the system. Running a diverse set of
workloads on this kernel using SimOS, we demonstrate that

191

performance isolation is feasible and robust across a range
of workloads and resources. The results show that
performance isolation is successful at providing
workstation-like isolation under heavy load, SMP-like
latencies under light load, and SMP-like throughput. Given
the benefits and robustness of the results, we believe
performance isolation should be seriously considered for
implementation for all SMP server operating systems.

References
[ACP+94] T. Anderson, D. Culler, D. Patterson. A Case for NOW
(Networks of Workstations). In IEEE Micro, February 1995.
[ABL+91] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: effective kernel support for the
user-level management of parallelism. In Proceedings of the 13th
ACM Symposium on Operating System Principles, pages 95-109,
October 199 1.
[AEE+97] J. Aman, C. Eilert, D. Emmes, I? Yocom, and D.
Dillenberger. Adaptive algorithms for managing a distributed data
processing workload. In IBM Systems Journal, vol. 36, no. 2, pages
242-283, 1997.
[AOG91] D. Anderson, Y. Osawa, and R. Govindan. Real-time
disk storage and retrieval of digital audio/video data. In Technical
Report CSD-91-646, Computer Science Department, U. of
California, Berkeley, August, 1991
[CDV+94] R. Chandra, S Devine, B Verghese, A Gupta, and M.
Rosenblum. Scheduling and Page Migration for Multiprocessor
Compute Servers. In Proceedings, Architectural Support for
Programming Languages and Operating Systems, 12-24, October
1994.
[Cus93] H.Custer. Inside Windows NT. Microsoft Press, 1993.
[DrB96] I? Druschel and G. Banga. Lazy Receiver Processing
(LRP): A Network Subsystem Architecture for Server Systems. In
Proceedings of the 2nd Symposium on Operating Systems Design
and Implementation, pages 261-275, October 1996.
U-W K. Harty and D. Cheriton. A Market Approach to
Operating System Memory Allocation. Stanford TR, http://www-
dsg.stanford.edu/Publications.html.
[Hen841 G.J. Henry. The Fair Share Scheduler. AT & T Bell
Laboratories Technical Journal, October, 1984.
[Her981 S. Herrod. Using Complete Machine Simulation to
Understand Computer System Behavior. Technical Report: STAN-
CS-TR-98-1603, Computer Science Department, Stanford
University, February 1998.
[Hyd941 E. Hyden. Operating System Support for Quality of
Service. Ph.D. Thesis, Wolfson College, University of Cambridge,
February, 1994.

[KaL88] J.Kay and F?Lauder. A Fair Share Scheduler.
Communications of the ACM, January, 1988.
[KrC91] P. Krueger and R. Chawla. The Stealth Distributed
Scheduler. In 1 lth International Conference on Distributed
Computing Systems, May, 1991.
[KTR94] D. Kotz, S. Toh, and S. Radhakrishnan. A Detailed
Simulation Model of the HP 97560 Disk Drive. Dartmouth PCS-
TR94-220, July, 1994.
[LeL82] H. Levy and P. Lippman. Virtual Memory
Management in the VAX/VMS Operating System, IEEE
Computer, Mafch, 1982
[Mer97] C. Mercer. Operating system resource reservation for
real-time multimedia applications. Ph.D. Thesis, School of
Computer Science, Carnegie Mellon University, CMU-CS-97-155,
June 1997.
[Ous82] J.K. Ousterhout. Scheduling Techniques for
Concurrent Systems, In 3rd International Conference on
Distributed Computing Systems, 1982
[RHW+95] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.
Complete Computer Simulation: the SimOS approach. In IEEE
Parallel and Distributed Technology, Fall 1995.
[Sof96] SHAREII: A resource management tool. SHARE11
data sheet, Softway Pty. Ltd., Sydney, Australia.
[SRL90] L. Sha, R. Rajkumar, and J. Lehozcky. Priority
inheritance protocols: An approach to real-time synchronization.
IEEE Transactions on Computers, pages 1175-l 185, September
1990.
[Teo72] T. Teory. Properties of Disk Scheduling Policies in
Multiprogrammed Computer Systems. In Proceedings of AFIPS
Fall Joint Conference, pages l-l 1, 1972.
[TuG91] A. Tucker and A. Gupta. Process control and
scheduling issues for multiprogrammed shared-memory
multiprocessors. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, pages 159-166, December 1991.
[WaI95] CA. Waldspurger. Lottery and Stride Scheduling:
Flexible Proportional-Share Resource Management. Ph.D. Thesis,
Massachusetts Institute of Technology, September 1995.
[WaW95] C.A. Waldspurger and W.E. Weihl. Stride Scheduling:
Deterministic Proportional-Share Resource Management.
Technical Memorandum MIT/LCS/TM-528, June, 1995.
[WOT+95] S. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations, In Proceedings 22nd Annual International
Symposium on Computer Architecture, June, 1995.

192

