
DenaliDenali

Lightweight virtual machines for Lightweight virtual machines for
distributed and networked systemsdistributed and networked systems

Steven D. Gribble, Andrew Whitaker, Marianne Shaw

Department of Computer Science and EngineeringDepartment of Computer Science and Engineering

University of WashingtonUniversity of Washington

http://denali.cs.washington.edu
{gribble,andrew,mar}@cs.washington.edu

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Content delivery: not just static anymoreContent delivery: not just static anymore

•• Recent progression of contentRecent progression of content--delivery architecturesdelivery architectures

–– CDNsCDNs, proxy caches, P2P, …, proxy caches, P2P, …
• premise same for all: replicate static content

–– but: a large fraction of content is dynamicbut: a large fraction of content is dynamic
• 20-40% of web requests are to dynamic content [Wolman99]

• these systems have, or soon will, “hit the wall”

•• Need to think about distributing dynamic contentNeed to think about distributing dynamic content

–– inject contentinject content--generation code intogeneration code into CDNsCDNs, caches, caches
• infrastructure completely distrusts this code

• isolation and security challenge

– existing research doesn’t adequately solve

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Content delivery: challenges of scaleContent delivery: challenges of scale

•• High degree of concurrency in caches, serversHigh degree of concurrency in caches, servers

–– lessons from web proxy cacheslessons from web proxy caches
• hundreds/thousands web pages in hot set

• O(100) simultaneous requests at any time

•• Driven byDriven by ZipfianZipfian popularity distributionspopularity distributions

–– 50% of access to 6% sites50% of access to 6% sites

–– 20% of accesses to least20% of accesses to least
popular 50% of sitespopular 50% of sites

–– need fast context switching!need fast context switching!
0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

service #

cu
m

u
la

ti
ve

 p
ro

b
 o

f a
cc

es
si

n
g

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Pushing Internet servicesPushing Internet services

•• Vision for future applications: the network is computerVision for future applications: the network is computer

–– requires scalable, available hosting infrastructurerequires scalable, available hosting infrastructure

•• Barrier to deployment of new services is highBarrier to deployment of new services is high

–– cost of physical equipment largecost of physical equipment large
• >=1 physical machine, rack space, power, admin, etc.

–– stifles grassroots service innovationstifles grassroots service innovation

•• Ideal: push new services into virtual hosting siteIdeal: push new services into virtual hosting site

–– most will be unpopular: must multiplex large number of servicesmost will be unpopular: must multiplex large number of services

–– same isolation, multiplexing, context switching issues as beforesame isolation, multiplexing, context switching issues as before

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

What do these have in common?What do these have in common?

•• Hosts must execute Hosts must execute untrusted untrusted codecode

–– need a bulletproof protection domain to isolateneed a bulletproof protection domain to isolate

•• Large degree of concurrency requiredLarge degree of concurrency required

–– protection domains must be lightweightprotection domains must be lightweight
• so can run hundreds simultaneously

–– fast context switching between domainsfast context switching between domains
• Zipf: implies swapping domains in/out at tail

–– implies careful control of resourceimplies careful control of resource mux’ingmux’ing

•• Little/no data sharing between domains is necessaryLittle/no data sharing between domains is necessary

–– (possibly not true for (possibly not true for CGIsCGIs/services backed by big DB)/services backed by big DB)

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

OutlineOutline

•• Motivating applicationsMotivating applications

•• Case for Case for LVMsLVMs

•• Core virtualization issuesCore virtualization issues

•• Architecture and implementationArchitecture and implementation

–– paravirtualizationparavirtualization

–– our VMM/VM architectureour VMM/VM architecture

•• Long term plansLong term plans

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Conventional OS view of worldConventional OS view of world

•• OS provides shared abstractions, enforces OS provides shared abstractions, enforces
protection across applicationsprotection across applications

hardware

operating system

ap
p

ap
p

ap
p

ap
p…protection,

abstractions,
naming

resources

sharingWhat you’re
used to

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Our intended approachOur intended approach

•• Instead,Instead, virtualizevirtualize at the HW interface level at the HW interface level
using using virtual machine monitorsvirtual machine monitors

hardware

…
abstractions

protection,
resources,

naming

Virtual machine
monitors

O
S

ap
p

O
S

ap
p

O
S

ap
p

O
S

ap
p

virtual machine
monitor

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

1. No fixed, high1. No fixed, high--level abstractionslevel abstractions

•• High level abstractions have “layerHigh level abstractions have “layer--below” problemsbelow” problems

–– semantic gap between abstraction and the resources being semantic gap between abstraction and the resources being
protected below abstractionprotected below abstraction

• shared file descriptors bypassing FS access control

• packet sniffer capturing shared files through NFS

• forced core dumps reveal passwords

•• Fixed abstractions make it hard to express isolationFixed abstractions make it hard to express isolation

–– e.g., virtual address spaces are too coarsee.g., virtual address spaces are too coarse--grainedgrained

–– e.g., DB’s need recorde.g., DB’s need record--level isolation, c.f. file systemlevel isolation, c.f. file system

–– virtual machines: defer abstractions to higher layervirtual machines: defer abstractions to higher layer
• don’t impose single protection interface on apps

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

2. Simple, intuitive sharing model2. Simple, intuitive sharing model

•• Protection can be represented by access control matrixProtection can be represented by access control matrix
–– a reference monitor enforces policya reference monitor enforces policy

–– two sources of security flaws:two sources of security flaws:
• badly expressed policy

• bugs in (complex) monitor

– monitor = OS, JRE, …

•• Virtual machines simplify both!Virtual machines simplify both!
–– simpler reference monitor (narrower abstractions)simpler reference monitor (narrower abstractions)

–– start with start with nono sharingsharing
• relax by allowing share-by-copy over virtual network

• at least some hope of getting this right!

–– VMsVMs: applications are principals, not users: applications are principals, not users

Rgribble

R,WR,Wroot

/etc/motd/etc/pwd

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

3. Private namespaces3. Private namespaces

•• Global namespaces lead to many vulnerabilitiesGlobal namespaces lead to many vulnerabilities

–– e.g.,e.g., aliasingaliasing: many names refer to same object: many names refer to same object

–– e.g., escalation of privilege: move to different column in matrie.g., escalation of privilege: move to different column in matrixx

•• A VM cannot name, let alone access, a resource in A VM cannot name, let alone access, a resource in
another VM!another VM!

–– makes sharing impossible: so, allow virtual makes sharing impossible: so, allow virtual ethernetethernet

• single “choke point”, forces copies rather than access

• switching, IDS, firewalls directly applicable

•• Virtualization is a level of indirection from HWVirtualization is a level of indirection from HW

–– transparently insert/change physical devices, migrate code, …transparently insert/change physical devices, migrate code, …

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

OutlineOutline

•• Motivating applicationsMotivating applications

•• Case for Case for LVMsLVMs

•• Core virtualization issuesCore virtualization issues

•• Architecture and implementationArchitecture and implementation

–– paravirtualizationparavirtualization

–– our VMM/VM architectureour VMM/VM architecture

•• Long term plansLong term plans

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Which architecture to Which architecture to virtualizevirtualize??

•• x86, x86, ItaniumItanium, PowerPC, , PowerPC, SparcSparc, Alpha?, Alpha?

–– unfortunately, a tradeoff between simplicity and market reachunfortunately, a tradeoff between simplicity and market reach

•• Many aspects of architecture to Many aspects of architecture to virtualizevirtualize

–– CPUCPU
• instruction set, registers, processor modes, SMP issues

–– Memory subsystemMemory subsystem
• translation hardware: segmentation, paging, TLB

• privilege levels: user vs. supervisor, protection rings

–– I/OI/O

• console, disk, network, clocks, timers, and other devices

• interrupt and exception dispatching

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Instruction set virtualizationInstruction set virtualization

•• Definition of virtualizability (Goldberg, 1974)Definition of virtualizability (Goldberg, 1974)

–– for efficiency, execute instructions nativelyfor efficiency, execute instructions natively

–– to protect VMM, execute VM with phys. CPU in user modeto protect VMM, execute VM with phys. CPU in user mode

• “privileged” instructions must be trapped and emulated

– e.g., accessing processor state: status registers, TLB, I/O
instructions, interrupt dispatching

–– virtualizablevirtualizable: privileged : privileged instrinstr. throw exceptions in user mode. throw exceptions in user mode

•• x86 is not x86 is not virtualizablevirtualizable

–– 17 privileged x86 instructions do not trap in user mode17 privileged x86 instructions do not trap in user mode

–– whither whither VMwareVMware? must be really hairy binary rewriting!? must be really hairy binary rewriting!

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Scheduling, resource managementScheduling, resource management

•• Zipf Zipf curve dominates all decisionscurve dominates all decisions

–– 66--10% of concurrent machines are popular (pinned)10% of concurrent machines are popular (pinned)
• rest are unpopular, must be quickly swapped in

–– design issue: granularity of swapping?design issue: granularity of swapping?
• phys. pages, virtual phys. pages, virtual virt. pages, or VMs?

• VMM is unaware of resource mgmt. decisions of guest OS

– double paging?

–– control relative resource consumption ratescontrol relative resource consumption rates

• important for isolation: CPU heavy service should not be able to
overly penalize differently balanced services

• goal: fair queueing of I/O

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

What guest OS should we run?What guest OS should we run?

•• Remember: goal of 100’s of concurrentRemember: goal of 100’s of concurrent VMsVMs

–– implies cannot run stock Linux or Win2Kimplies cannot run stock Linux or Win2K

–– need to select/modify/build something elseneed to select/modify/build something else

• there be dragons here

•• But: protection is now below level of OSBut: protection is now below level of OS

–– opportunity to remove OS protection complexityopportunity to remove OS protection complexity
• simplify OS design significantly

•• Also: can pick what devices toAlso: can pick what devices to virtualizevirtualize

–– e.g., leaste.g., least--commoncommon--denominator NICdenominator NIC

• simplfying the virtual architecture simplifies our job

• hmm….a principle is beginning to emerge…

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

OutlineOutline

•• Motivating applicationsMotivating applications

•• Case for Case for LVMsLVMs

•• Core virtualization issuesCore virtualization issues

•• Architecture and implementationArchitecture and implementation

–– paravirtualizationparavirtualization

–– our VMM/VM architectureour VMM/VM architecture

•• Long term plansLong term plans

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Key insight: “Key insight: “paravirtualizationparavirtualization””

•• Make virtual arch. close, but not identical, to x86Make virtual arch. close, but not identical, to x86

–– close for efficiency (direct execution of mostclose for efficiency (direct execution of most instrinstr.).)

–– but, dodge all of the tough partsbut, dodge all of the tough parts

• 17 non-virtualizable instructions: semantics undefined

• goofy processor modes: semantics undefined

• paging, protection: not available (!!)

• boot sequence: eliminate with simple, preinitialized devices

•• Implies cannot run stock OS on virtual architectureImplies cannot run stock OS on virtual architecture

–– note: the 17 nonnote: the 17 non--virtualizablevirtualizable insrtinsrt. are rare (~20 lines in Linux). are rare (~20 lines in Linux)

• but, we didn’t want to run stock OS anyway

•• Implies cannot run guest OS on physical architectureImplies cannot run guest OS on physical architecture

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Basic VMM architectureBasic VMM architecture

•• we are building our VMM on top of Flux we are building our VMM on top of Flux OSkitOSkit
–– library of C code for interacting with hardwarelibrary of C code for interacting with hardware

demux

VNIC Vdisk Vtimer

register
file

VNIC Vdisk Vtimer

register
file

physical disk(s)physical NIC(s) physical timer(s)

page
tables

page
tables

demux demux

fair queuing

VM 1 VM 2

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Virtual and physical timeVirtual and physical time

•• Both timelines must be exposedBoth timelines must be exposed

–– physical:physical: kerberoskerberos, WWW caching, TCP timeouts, ..., WWW caching, TCP timeouts, ...

–– virtual: timer interruptsvirtual: timer interrupts

•• Time from the perspective of Time from the perspective of VMsVMs::

physical time

virtual
time

switched
out

switched
out

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Timer interruptsTimer interrupts

•• One virtual timer per virtual machineOne virtual timer per virtual machine

–– VMs VMs can implement software timers if it wants morecan implement software timers if it wants more

–– question: what granularity should we offer?question: what granularity should we offer?

VM 1 VM 2 VM 3 VM 4

physical time

scheduled VM

physical interrupts 1 2 4 3 4 4 1 43

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Timer interruptsTimer interrupts

•• One virtual timer per virtual machineOne virtual timer per virtual machine

–– VMs VMs can implement software timers if it wants morecan implement software timers if it wants more

–– question: what granularity should we offer?question: what granularity should we offer?

VM 1 VM 2 VM 3 VM 4

physical time

scheduled VM

virtual interrupts 1 2 43 4

•• Granularity is inversely proportional to popularityGranularity is inversely proportional to popularity

–– happy accident:happy accident: VtimersVtimers enjoy finer granularity when VM busyenjoy finer granularity when VM busy

physical interrupts 1 2 4 3 4 4 1 431 2 4 3 4 4 1 43

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Interrupt issuesInterrupt issues

•• “Spike” on context“Spike” on context--switch begs questionsswitch begs questions

–– physical interrupts are synchronous w.r.t physical timephysical interrupts are synchronous w.r.t physical time
• virtual are asynchronous

–– traditional stacked interrupts designed for synchronytraditional stacked interrupts designed for synchrony
• each results in context switch + boundary crossing

• notification mechanism is conflated with interrupt state

•• change virtual interrupt semantics for asynchronychange virtual interrupt semantics for asynchrony

–– expose readexpose read--only only bitmask bitmask of pending interruptsof pending interrupts
• separates interrupt state from interrupt notification

• VM is interrupted once when this changes state

– guest OS disables interrupts, loops until bitmask is cleared

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

IdlenessIdleness

•• What about the idle loop in a guest OS?What about the idle loop in a guest OS?

–– pop quiz: under what circumstances do physical pop quiz: under what circumstances do physical
CPUs stop executing instructions?CPUs stop executing instructions?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

IdlenessIdleness

•• What about the idle loop in a guest OS?What about the idle loop in a guest OS?

–– pop quiz: under what circumstances do physical pop quiz: under what circumstances do physical
CPUs stop executing instructions?CPUs stop executing instructions?

• power off, suspend, slow down in low-power mode

–– invariant:invariant: the only idle loop consuming physical CPU the only idle loop consuming physical CPU
cycles should be cycles should be VMM’sVMM’s

• add “idle” instruction to virtual ISA

– semantics: suspend VM until a new interrupt arrives

• not doing this hurts massively

– aggregate throughput drops with # of VMs

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Guest OS must be aware of VMMGuest OS must be aware of VMM

•• Consider packetConsider packet interarrivalinterarrival of an unpopular serviceof an unpopular service
–– e.g., a web session every 5 hourse.g., a web session every 5 hours

•• unpopular services must turn off periodic timer unpopular services must turn off periodic timer
interrupts between “pages” and “sessions”interrupts between “pages” and “sessions”
–– to avoid being continually swapped into avoid being continually swapped in

interarrival time

probability ~200 ms

~120 s
~5 hrs

packets

pages
sessions

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

“Fast boot” is a requirement“Fast boot” is a requirement

•• Issue: mechanics of swapping Issue: mechanics of swapping VMs VMs in and outin and out

–– is it “APM suspend/restore”, or a “shutdown/reboot”?is it “APM suspend/restore”, or a “shutdown/reboot”?
• tradeoff betw. performance and software rejuvenation

– if suspend/restore, memory leaks are not cleaned up

– if shutdown/reboot, pay price of OS and device restart

–– plan: suspend/restore most of the time, occasional plan: suspend/restore most of the time, occasional
shutdown/rebootshutdown/reboot

• paravirtualization helps here too: devices start in initialized
state, boot sequence is minimal

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Supervisory VMSupervisory VM

•• Idea: have one trusted, powerful VMIdea: have one trusted, powerful VM

–– ability to start, stop, monitor, migrate ability to start, stop, monitor, migrate VMsVMs

–– console + UI for controlling VMMconsole + UI for controlling VMM

–– contains allocation policy of physical resources to virtual contains allocation policy of physical resources to virtual
machinesmachines

•• Why put in supervisor VM instead of VMM?Why put in supervisor VM instead of VMM?

–– keeps VMM simple and effectively statelesskeeps VMM simple and effectively stateless

• e.g., no TCP stack in VMM

–– separates supervision policy from virtualization mechanismseparates supervision policy from virtualization mechanism

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

LibOSLibOS architecturearchitecture

•• PushPush paravirtualizationparavirtualization all the wayall the way
–– virtual architecture doesn’t support protection, virtual memoryvirtual architecture doesn’t support protection, virtual memory

• no paging à single-address space for guest OS + app(s)

• OS becomes a library (similar to exokernel libOS)

–– simple usersimple user--level threads packagelevel threads package

•• our first our first libOSlibOS is designed for web servicesis designed for web services
–– Alpine userAlpine user--level network stacklevel network stack

• BSD stack, with OS dependencies “stubbed out”

• malloc, timer, packet xmit/rcv

–– we’re shopping for a simple userwe’re shopping for a simple user--level FS for readlevel FS for read--mostly datamostly data

–– anticipate a large set ofanticipate a large set of VMsVMs using the sameusing the same libOSlibOS
• share its code pages copy-on-write across VMs?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Some “freebies”Some “freebies”

•• Can imagine clever virtual hardware devicesCan imagine clever virtual hardware devices

–– copycopy--onon--write disks, nonwrite disks, non--persistent diskspersistent disks
• safely share read-only data across VMs

–– appendappend--only log disksonly log disks
• LFS without the cleaner

•• Checkpoint / migration / recovery for freeCheckpoint / migration / recovery for free

–– simple to capture entire machine statesimple to capture entire machine state

• once you can capture it, you can move it, copy it, etc.

• all underlying hardware names are virtual

–– can even hot swap physical hardware undercan even hot swap physical hardware under VMsVMs!!

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

OutlineOutline

•• Motivating applicationsMotivating applications

•• Case for Case for LVMsLVMs

•• Core virtualization issuesCore virtualization issues

•• Architecture and implementationArchitecture and implementation

–– paravirtualizationparavirtualization

–– our VMM/VM architectureour VMM/VM architecture

•• Long term plansLong term plans

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Virtual clustersVirtual clusters

•• virtual clusters within a physical clustervirtual clusters within a physical cluster

–– VMsVMs offer multiple levels of resource allocation and offer multiple levels of resource allocation and
containmentcontainment

• fair queuing and quotas inside one node’s VMM

• cloning virtual machines across cluster nodes

– migration can become a load balancing and resource
management mechanism

–– goal: havegoal: have VMMsVMMs cooperate across nodes to build cooperate across nodes to build
virtual clustersvirtual clusters

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Placement ofPlacement of VMsVMs inside a clusterinside a cluster

•• goal: a balanced use of physical resources that goal: a balanced use of physical resources that
obtains max throughput at min cost ($)obtains max throughput at min cost ($)

–– open question: homogenous cluster, or open question: homogenous cluster, or
heterogeneous cluster with specialized nodes?heterogeneous cluster with specialized nodes?

service #

po
pu

la
rit

y

1,2 3,4,5 6 .. 50 51 .. 500

CPU bound disk bound

500 .. 5000

{rnd} {rnd} {rnd} {rnd} {rnd}

heterogen.

homogen.

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Largest open issueLargest open issue

•• What if service/CGI relies on a large DB?What if service/CGI relies on a large DB?

–– partition DB and ship slices?partition DB and ship slices?
• works well for mass-customization or geographic locality

–– copy entire DB, share amongst manycopy entire DB, share amongst many VMsVMs??
• define “views” over DB as isolation mechanism

–– resort to accessing DB remotely over WAN?resort to accessing DB remotely over WAN?
• negates most of benefit of shipping code

• perhaps demand-load views of DB?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

OnOn--demand loading of demand loading of VMsVMs

•• WideWide--area system of demandarea system of demand--loadedloaded VMsVMs

–– similar to caching hierarchy orsimilar to caching hierarchy or CDNsCDNs

–– instead of demandinstead of demand--loading content, demand load an loading content, demand load an
entire VMentire VM

• same issues as cache systems, but with larger images (5-
10MB instead of 5-10KB)

–– one other wrinkle: what if the contentone other wrinkle: what if the content--generation generation
code relies on a large DB?code relies on a large DB?

• either copy the DB over, or access master copy over WAN?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Final thoughtsFinal thoughts

•• ParaPara--virtualization blurs the linesvirtualization blurs the lines

–– OS / process OS / process vs. vs. VMM / [VM:VMM / [VM:libOSlibOS]]

•• some key distinctions:some key distinctions:

–– namespace isolationnamespace isolation
• no sharing of resources between VMs

–– no “layer below” issuesno “layer below” issues
• why we don’t have TCP/IP stack in VMM

–– only state in VMM is virtual device emulation stateonly state in VMM is virtual device emulation state
• simplifies migration

Questions?Questions?

