Denali

Lightweight virtual machines for
distributed and networked systems

Steven D. Gribble, Andrew Whitaker, Marianne Shaw
Department of Computer Science and Engineering

University of Washington

http://denali.cs.washington.edu
{gribble,andrew,mar}@cs.washington.edu

Content delivery: not just static anymore

« Recent progression of content-delivery architectures
— CDNs, proxy caches, P2P, ...

* premise same for all: replicate static content
— but: a large fraction of content is dynamic
* 20-40% of web requests are to dynamic content [WWolman99]

* these systems have, or soon will, “hit the wall”

 Need to think about distributing dynamic content

— inject content-generation code into CDNSs, caches
* infrastructure completely distrusts this code
* isolation and security challenge
— existing research doesn’t adequately solve

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Content delivery: challenges of scale

 High degree of concurrency in caches, servers

- lessons from web proxy caches
e hundreds/thousands web pages in hot set

e O(100) simultaneous reguests at any time

e Driven by Zipfian popularity distributions

— 50% of access to 6% sites g /

— 20% of accesses to least e
popular 50% of sites A

- need fast context switching! | ¢ " | ——"

1 10 100 1000 10000

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Pushing Internet services

e Vision for future applications: the network is computer
— requires scalable, available hosting infrastructure
 Barrier to deployment of new services is high

— cost of physical equipment large
e >=]1 physical machine, rack space, power, admin, etc.

— stifles grassroots service innovation
e l|deal: push new services into virtual hosting site

— most will be unpopular: must multiplex large number of services
— same isolation, multiplexing, context switching issues as before

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

What do these have in common?

« Hosts must execute untrusted code
- need a bulletproof protection domain to isolate
« Large degree of concurrency required

— protection domains must be lightweight

* S0 can run hundreds simultaneously
— fast context switching between domains
* Zipf: implies swapping domains in/out at tail
— implies careful control of resource mux’ing
« Little/no data sharing between domains is necessary
— (possibly not true for CGls/services backed by big DB)

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Qutline

e Case for LVMs

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Conventional OS view of world

 OS provides shared abstractions, enforces
protection across applications

Q. Q. Q. Q.

. Q. Q. Q. Q.

protection, © | o | ke

abstractions, —» ‘ ’
What you're naming sharing
used to operating system
resources —»
hardware

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Our intended approach

e Instead, virtualize at the HW interface level
using virtual machine monitors

o o o o
SISl & &
abstractions
\

) i : NIl wm ni1wm
Virtual machine protection, olo ol o
: resources, > . :
monitors A virtual machine
monitor
hardware

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

1. No fixed, high-level abstractions

High level abstractions have “layer-below” problems

-~ semantic gap between abstraction and the resources being
protected below abstraction

» shared file descriptors bypassing FS access control

» packet sniffer capturing shared files through NFS

» forced core dumps reveal passwords
Fixed abstractions make it hard to express isolation
—- e.g., virtual address spaces are too coarse-grained
- e.g., DB’s need record-level isolation, c.f. file system

— virtual machines: defer abstractions to higher layer
e don’t impose single protection interface on apps

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

2. Simple, intuitive sharing model

 Protection can be represented by access control matrix
- a reference monitor enforces policy

— two sources of security flaws: Jetc/pwd | /etc/motd

* badly expressed policy

* bugs in (complex) monitor e RW R,W

— monitor = OS, JRE, ... gribble R

e Virtual machines simplify both!
— simpler reference monitor (narrower abstractions)

— start with no sharing
* relax by allowing share-by-copy over virtual network
e at least some hope of getting this right!

- VMs: applications are principals, not users

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

3. Private namespaces

 Global namespaces lead to many vulnerabilities
- e.g., aliasing: many names refer to same object

- e.g., escalation of privilege: move to different column in matrix

« A VM cannot name, let alone access, aresource in
another VM!

— makes sharing impossible: so, allow virtual ethernet
* single “choke point”, forces copies rather than access
e switching, IDS, firewalls directly applicable

 Virtualization is a level of indirection from HW

— transparently insert/change physical devices, migrate code, ...

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Qutline

e Core virtualization issues

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Which architecture to virtualize?

e Xx86, Itanium, PowerPC, Sparc, Alpha?
— unfortunately, a tradeoff between simplicity and market reach

« Many aspects of architecture to virtualize

- CPU
* instruction set, registers, processor modes, SMP issues

- Memory subsystem

* translation hardware: segmentation, paging, TLB

* privilege levels: user vs. supervisor, protection rings
- 1/O

e console, disk, network, clocks, timers, and other devices
* interrupt and exception dispatching

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Instruction set virtualization

e Definition of virtualizability (Goldberg, 1974)

— for efficiency, execute instructions natively
— to protect VMM, execute VM with phys. CPU in user mode

* “privileged” instructions must be trapped and emulated

— e.g., accessing processor state: status registers, TLB, 1/0
instructions, interrupt dispatching

— virtualizable: privileged instr. throw exceptions in user mode
 Xx86 Is not virtualizable

— 17 privileged x86 instructions do not trap in user mode
— whither VMware? must be really hairy binary rewriting!

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Scheduling, resource management

e Zipf curve dominates all decisions

— 6-10% of concurrent machines are popular (pinned)
* rest are unpopular, must be quickly swapped in
— design issue: granularity of swapping?
* phys. pages, virtual phys. pages, virtual virt. pages, or VMs?
* VMM is unaware of resource mgmt. decisions of guest OS
— double paging?
— control relative resource consumption rates

* important for isolation: CPU heavy service should not be able to
overly penalize differently balanced services

e goal: fair gueueing of 1/0

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

What guest OS should we run?

« Remember: goal of 100’s of concurrent VMs
— implies cannot run stock Linux or Win2K
— need to select/modify/build something else
* there be dragons here
e But: protection is now below level of OS
— opportunity to remove OS protection complexity
e simplify OS design significantly
e Also: can pick what devices to virtualize

— e.g., least-common-denominator NIC
* simplfying the virtual architecture simplifies our job
* hmm....a principle is beginning to emerge...

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Qutline

e Architecture and implementation

— paravirtualization
- our VMM/VM architecture

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Key insight: “paravirtualization”

« Make virtual arch. close, but not identical, to x86
— close for efficiency (direct execution of most instr.)
— but, dodge all of the tough parts
* 17 non-virtualizable instructions: semantics undefined
* goofy processor modes: semantics undefined
* paging, protection: not available (!!)
* boot sequence: eliminate with simple, preinitialized devices
 |Implies cannot run stock OS on virtual architecture
— note: the 17 non-virtualizable insrt. are rare (~20 lines in Linux)

* but, we didn’t want to run stock OS anyway

 |Implies cannot run guest OS on physical architecture

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Basic VMM architecture

VM 2

Hl

Vdisk

VM 1
register | | |pmm |%|
file I%l O
VNIC
page
tables

VNIC

/

m |%| register
I%l o file
Vtimer
falr queumg

demux / \.demux /

Vdisk Vtimer

page
tables

N\demux,/”

physical NIC(s)

physical disk(s)

physical timer(s)

 we are building our VMM on top of Flux OSkit

— library of C code for interacting with hardware

Case for Denali: lightweight VMs

©2001, Steven D. Gribble

Virtual and physical time

 Both timelines must be exposed
- physical: kerberos, WWW caching, TCP timeouts, ...

— virtual: timer interrupts

« Time from the perspective of VMSs:

virtual
time

/ switched
P out

switched
out

>
physical time

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Timer interrupts

e One virtual timer per virtual machine

-~ VMs can implement software timers if it wants more
— question: what granularity should we offer?

scheduled VM VM 1 VM 2 VM 3 VM 4

R | 5 I I B

physical time

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Timer interrupts

e One virtual timer per virtual machine

-~ VMs can implement software timers if it wants more
— question: what granularity should we offer?

A A A
virtual interrupts 1 2 37 4AH 4

scheduled VM VM 1 VM 2 VM 3 VM 4

A A
physical interrupts 1 ZT Tﬁ% 4T Tﬁ% 4T 4T J 4
>

physical time

o Granularity is inversely proportional to popularity

— happy accident: Vtimers enjoy finer granularity when VM busy

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Interrupt iIssues

« “Spike” on context-switch begs questions

— physical interrupts are synchronous w.r.t physical time
 virtual are asynchronous

— traditional stacked interrupts designed for synchrony
* each results in context switch + boundary crossing

* notification mechanism is conflated with interrupt state

 change virtual interrupt semantics for asynchrony

— expose read-only bitmask of pending interrupts
* separates interrupt state from interrupt notification
* VM is interrupted once when this changes state
— guest OS disables interrupts, loops until bitmask is cleared

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

ldleness

 What about the idle loop in a guest OS?

— pop quiz: under what circumstances do physical
CPUs stop executing instructions?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

ldleness

 What about the idle loop in a guest OS?

— pop quiz: under what circumstances do physical
CPUs stop executing instructions?

e power off, suspend, slow down in low-power mode

— Invariant: the only idle loop consuming physical CPU
cycles should be VMM'’s
e add “idle” instruction to virtual ISA
— semantics: suspend VM until a new interrupt arrives
e not doing this hurts massively
— aggregate throughput drops with # of VMs

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Guest OS must be aware of VMM

« Consider packet interarrival of an unpopular service
— e.g., a web session every 5 hours

packets

A _
probability e

pages

~120s sessions
~5 hrs

.

interarrival time

e unpopular services must turn off periodic timer
Interrupts between “pages” and “sessions”

— to avoid being continually swapped in

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

“Fast boot” is a requirement

e Issue: mechanics of swapping VMs in and out

- Is it “APM suspend/restore”, or a “shutdown/reboot™?
* tradeoff betw. performance and software rejuvenation
— If suspend/restore, memory leaks are not cleaned up

— if shutdown/reboot, pay price of OS and device restart

- plan: suspend/restore most of the time, occasional
shutdown/reboot

e paravirtualization helps here too: devices start in initialized
state, boot sequence is minimal

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Supervisory VM

 |dea: have one trusted, powerful VM
— ability to start, stop, monitor, migrate VMs
— console + Ul for controlling VMM

— contains allocation policy of physical resources to virtual
machines

« Why putin supervisor VM instead of VMM?

— keeps VMM simple and effectively stateless
* e.g., ho TCP stack in VMM

— separates supervision policy from virtualization mechanism

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

LibOS architecture

 Push paravirtualization all the way
— virtual architecture doesn’t support protection, virtual memory
* no paging > single-address space for guest OS + app(s)
* OS becomes a library (similar to exokernel libOS)

— simple user-level threads package

o our first libOS is designed for web services

— Alpine user-level network stack

 BSD stack, with OS dependencies “stubbed out”

* malloc, timer, packet xmit/rcv
— we're shopping for a simple user-level FS for read-mostly data
— anticipate a large set of VMs using the same libOS

* share its code pages copy-on-write across VMs?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Some “freebies”

« Can imagine clever virtual hardware devices

— copy-on-write disks, non-persistent disks
» safely share read-only data across VMs

— append-only log disks
* LFS without the cleaner
« Checkpoint / migration / recovery for free
— simple to capture entire machine state

* once you can capture it, you can move it, copy it, etc.

 all underlying hardware names are virtual

— can even hot swap physical hardware under VMs!

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Qutline

 Long term plans

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Virtual clusters

« virtual clusters within a physical cluster

-~ VMs offer multiple levels of resource allocation and
containment
e fair queuing and quotas inside one node’'s VMM
 cloning virtual machines across cluster nodes
— migration can become a load balancing and resource
management mechanism
- goal: have VMMs cooperate across nodes to build
virtual clusters

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Placement of VMs inside a cluster

e goal: a balanced use of physical resources that
obtains max throughput at min cost ($)

— open guestion: homogenous cluster, or
heterogeneous cluster with specialized nodes?

>

popularity

>
service #

Case for Denali: lightweight VMs

CPU bound disk bound
1,2 3,45 6..50 51 ..500(|500 .. 5000
heterogen.
{rnd} {rnd} {rnd} {rnd} {rnd}

homogen.

©2001, Steven D. Gribble

Largest open issue

 What if service/CGl relies on a large DB?

— partition DB and ship slices?

e works well for mass-customization or geographic locality
— copy entire DB, share amongst many VMs?
 define “views” over DB as isolation mechanism

— resort to accessing DB remotely over WAN?

e negates most of benefit of shipping code

e perhaps demand-load views of DB?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

On-demand loading of VMs

 Wide-area system of demand-loaded VMs
— similar to caching hierarchy or CDNs

- Instead of demand-loading content, demand load an
entire VM

e same issues as cache systems, but with larger images (5-
10MB instead of 5-10KB)

— one other wrinkle: what if the content-generation
code relies on a large DB?

 either copy the DB over, or access master copy over WAN?

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

Final thoughts

e Para-virtualization blurs the lines
— OS / process VS. VMM / [VM:libOS]

« some key distinctions:

— namespace isolation
* no sharing of resources between VMs
- no “layer below” issues
e why we don’t have TCP/IP stack in VMM

— only state in VMM is virtual device emulation state

e simplifies migration

Case for Denali: lightweight VMs ©2001, Steven D. Gribble

