
11

Scale and Performance in theScale and Performance in the
Denali Isolation KernelDenali Isolation Kernel

Andrew Whitaker, Marianne Shaw, Steven D. Gribble

Department of Computer Science and EngineeringDepartment of Computer Science and Engineering
University of WashingtonUniversity of Washington

http://denali.cs.washington.edu
{andrew,mar,gribble}@cs.washington.edu

Denali: lightweight VMs ©2002, Steven D. Gribble

Rise of the Internet ServiceRise of the Internet Service

•• Internet services have exploded onto the sceneInternet services have exploded onto the scene
– application functionality is being pushed into the network
– web sites, search engines, online databases, CDNs, …

•• Substantial benefits to this modelSubstantial benefits to this model
– services are always available, from any device
– no software distribution: upgrades are instant
– centralized administration by experts rather than users

22

Denali: lightweight VMs ©2002, Steven D. Gribble

But…high barrier to deploymentBut…high barrier to deployment

•• Today, service provider must manage:Today, service provider must manage:
– software infrastructure (the service itself)
– physical infrastructure

• computers, rack space, network bandwidth, …

•• This is a huge barrier to deploymentThis is a huge barrier to deployment
– especially for wide-area services (e.g., CDNs)

•• Challenge: can we separate these management roles?Challenge: can we separate these management roles?
– try to do for software services what has already been done

for static web page hosting

Denali: lightweight VMs ©2002, Steven D. Gribble

A better modelA better model

•• Service pushed into third party hosting infrastructureService pushed into third party hosting infrastructure
•• Two main challengesTwo main challenges

– scale: not every service will warrant an entire machine
• Zipf’s law implies half of requests to unpopular services
• services must be multiplexed on shared physical

infrastructure

– security: services are untrusted
• infrastructure cannot trust hosted services
• services will not trust each other
• services must be isolated in a protection domain

33

Denali: lightweight VMs ©2002, Steven D. Gribble

Isolation kernelsIsolation kernels

•• Isolation kernel: an OSIsolation kernel: an OS--like software layerlike software layer
– multiplexes a physical machine across a large number of

isolated virtual machines
– similar to a virtual machine monitor (e.g., VMware)

• but, unlike VMMs, makes strategic changes to virtualized
architecture for scale, performance, and simplicity

Denali: lightweight VMs ©2002, Steven D. Gribble

OutlineOutline

•• IntroductionIntroduction
•• The case for isolation kernelsThe case for isolation kernels

– motivating applications
– isolation kernel design principles

•• The Denali isolation kernelThe Denali isolation kernel
– design and implementation

•• EvaluationEvaluation
•• Future directions and conclusionsFuture directions and conclusions

44

Denali: lightweight VMs ©2002, Steven D. Gribble

Motivating applicationsMotivating applications

•• Dynamic content delivery in Dynamic content delivery in CDNsCDNs and cachesand caches
– avoiding the “wall” of static content

•• Building a virtual Internet service hosting centerBuilding a virtual Internet service hosting center
– support both commercial and grassroots services
– shareware/freeware model for .NET?

•• WideWide--area Internet experimentation platformarea Internet experimentation platform
– Planetlab (Culler, Peterson, et al.)

•• Commonalities:Commonalities:
– all need multiplexing and isolation
– degree of information sharing between services is small

Denali: lightweight VMs ©2002, Steven D. Gribble

Design principles for isolation kernelsDesign principles for isolation kernels

1.1. Expose lowExpose low--level resources, not highlevel resources, not high--level abstractionslevel abstractions
2.2. Prevent direct sharing by exposing virtualized namesPrevent direct sharing by exposing virtualized names
3.3. Zipf’sZipf’s law implies a need to scalelaw implies a need to scale
4.4. Modify the virtual architecture for scale, performance, Modify the virtual architecture for scale, performance,

simplicitysimplicity

55

Denali: lightweight VMs ©2002, Steven D. Gribble

Expose lowExpose low--level resourceslevel resources

•• OSsOSs are ineffective at containing insecure codeare ineffective at containing insecure code
– much of this is because of OSs’ high-level abstractions
– e.g., file system, network stack

•• Two main problems with high level abstractionsTwo main problems with high level abstractions
– layer-below attacks

• defeat access control by requesting resource below layer of
enforcement

– significant complexity and wide API
• no economy of mechanism: complexity hurts security

•• Instead, expose resources at level of HW/SW interfaceInstead, expose resources at level of HW/SW interface
– disk blocks, memory pages, NIC, …

Denali: lightweight VMs ©2002, Steven D. Gribble

Prevent direct sharingPrevent direct sharing

•• OSsOSs expose global namespaces to facilitate sharingexpose global namespaces to facilitate sharing
– but, sharing must be controlled and protected for security
– challenge of specifying appropriate access control policy

•• Our target applications are mostly independentOur target applications are mostly independent
– little direct sharing is needed!
– expose private, virtual namespaces for low-level resources
– the only sharing possible is share-by-copy through the network

• trading away cheap sharing for stronger isolation

66

Denali: lightweight VMs ©2002, Steven D. Gribble

Zipf’s Zipf’s law and the need for scalelaw and the need for scale

•• Our target applications require high scalabilityOur target applications require high scalability
– hundreds, or thousands of services per physical machine

•• But worse, we expect But worse, we expect ZipfianZipfian popularity distributionspopularity distributions
– a few services are highly popular (easy case)
– large fraction of requests to unpopular services

•• Need to swap services in and out of memoryNeed to swap services in and out of memory
– goals:

• minimize in-memory footprint
• minimize swapping overhead

Denali: lightweight VMs ©2002, Steven D. Gribble

Strategically modify virtual architectureStrategically modify virtual architecture

•• So far, what we’ve been describing sounds like a VMMSo far, what we’ve been describing sounds like a VMM
– but: VMMs (VMware, VM/370) strive to support legacy systems
– to run unmodified OSs, applications, virtualized architecture must be

indistinguishable from underlying physical architecture

•• Huge burden!Huge burden!
– complexity: non-virtualizable aspects of architecture
– performance: “chatty” device interfaces
– scale: physical architecture not designed for scale

• interrupt model as an example

•• Must modify virtual architecture to overcomeMust modify virtual architecture to overcome
– but, giving up legacy support is a big step

• influence design of future architectures, OSs
• can get some of it back with OS API emulation

77

Denali: lightweight VMs ©2002, Steven D. Gribble

OutlineOutline

•• IntroductionIntroduction
•• The case for isolation kernelsThe case for isolation kernels

– motivating applications
– isolation kernel design principles

•• The Denali isolation kernelThe Denali isolation kernel
– design and implementation

•• EvaluationEvaluation
•• Future directions and conclusionsFuture directions and conclusions

Denali: lightweight VMs ©2002, Steven D. Gribble

The Denali isolation kernelThe Denali isolation kernel

•• Two topics to cover:Two topics to cover:
– the Denali virtual machine interface
– the implementation of the Denali isolation kernel

x86 hardware

Denali isolation kernel

service

“guest”
OS

service

“guest”
OS

service

“guest”
OS

• • •

x86 arch.
interface

Denali virtual
machine interface

88

Denali: lightweight VMs ©2002, Steven D. Gribble

ISAISA

•• Denali supports a subset of the x86 ISADenali supports a subset of the x86 ISA
– all virtualizable instructions are supported (direct execution)
– non-virtualizable instructions have undefined semantics

•• Some purely virtual instructionsSome purely virtual instructions
– idle-with-timeout: allows VM to halt its virtual CPU until a new

virtual interrupt is raised, or until a timeout expires
– self-terminate: allows VM to kill itself

•• New virtual registersNew virtual registers
– exposes system information (CPU speed, memory size, time)
– also used as cheap communications channel between isolation

kernel and a VM
• e.g., interrupt enabled flag

Denali: lightweight VMs ©2002, Steven D. Gribble

Interrupt modelInterrupt model

•• Physical interruptsPhysical interrupts
– synchronous, imply “something just happened”
– notification mechanism is conflated with interrupt state
– each results in context switch, protection boundary crossing

•• Denali virtual interruptsDenali virtual interrupts
– asynchronous, imply “one or more things happened in the past”
– single notification w/ batched interrupt state

VM 1 VM 2 VM 3 VM 4

time

scheduled VM

virtual interrupts 1 2 43 4

physical interrupts 1 2 4 3 4 4 1 43

99

Denali: lightweight VMs ©2002, Steven D. Gribble

Virtual architecture simplificationsVirtual architecture simplifications

•• In Denali, each VM has its own flat address spaceIn Denali, each VM has its own flat address space
– but, virtual memory is not virtualized

• if a service needs multiple protection domains, it should be
designed as multiple virtual machines

•• Virtual devices are vastly simplifiedVirtual devices are vastly simplified
– virtual ethernet packet send/receive is 1 PIO

• compared with >10 for many real NICs

– virtual device is independent of underlying physical device
• enhances portability

– on boot, all devices in known, pre-initialized state

•• Other simplifications:Other simplifications:
– no BIOS, no segmentation hardware

Denali: lightweight VMs ©2002, Steven D. Gribble

Denali implementationDenali implementation

•• Denali isolation kernel runs directly on x86 hardwareDenali isolation kernel runs directly on x86 hardware
– core of kernel (multiprogramming, paging, virtual device

emulation) was built from scratch
– used Flux OSKit for device drivers and other hardware support

•• Isolation kernel serves two rolesIsolation kernel serves two roles
– virtualization: exposes the Denali virtual interface
– resource management: multiplexes physical resources across

virtual machines
• we maintained a strict separation between virtualization

mechanism and resource management policy

1010

Denali: lightweight VMs ©2002, Steven D. Gribble

CPU and memory virtualizationCPU and memory virtualization

•• Fairly standard mechanismsFairly standard mechanisms
– per-VM kernel thread stack, timer driven context switching,

paging regions striped across disks

•• Two policies for CPU multiplexingTwo policies for CPU multiplexing
– gatekeeper: enforces admission control, by selecting a subset

of active machines to admit into system
– scheduler: controls context switching among active machines

• round-robin scheduling

•• Swapping policySwapping policy
– WSClock page replacement: clock variant that is more fair

towards machines that are reactivated after long inactivity

Denali: lightweight VMs ©2002, Steven D. Gribble

Virtual I/O devicesVirtual I/O devices

•• A virtual I/O device is basically a A virtual I/O device is basically a
queuing systemqueuing system
– virtual ethernet NIC has two queues

• incoming (Rx) packet queue
• outgoing (Tx) packet queue

•• Isolation kernel multiplexes and Isolation kernel multiplexes and
demultiplexes demultiplexes data from queuesdata from queues
– two policy questions:

• what is the queueing discipline?
• how many buffers should be allocated to

each queue?

VM 1VM 1 VM 2VM 2

ethernetethernet

isolationisolation
kernelkernel

1111

Denali: lightweight VMs ©2002, Steven D. Gribble

Supervisor VMSupervisor VM

•• Denali distinguishes one VM as the “supervisor”Denali distinguishes one VM as the “supervisor”
– endowed with more privilege

• start, stop other VMs
• VM migration: push or pull VM through supervisor

– our supervisor VM supports remote login and scripting

•• Whenever possible, complexity displaced from isolation Whenever possible, complexity displaced from isolation
kernel to supervisor VMkernel to supervisor VM
– for example, there is no TCP/IP stack in isolation kernel

Denali: lightweight VMs ©2002, Steven D. Gribble

Library OSLibrary OS

•• We built our own OS to run on the Denali architectureWe built our own OS to run on the Denali architecture
– ported BSD TCP/IP stack

• modified timers to better support idle-with-timeout instruction

– subset of posix UNIX API
• libc, thread support, virtual timer wheel

1212

Denali: lightweight VMs ©2002, Steven D. Gribble

OutlineOutline

•• IntroductionIntroduction
•• The case for isolation kernelsThe case for isolation kernels

– motivating applications
– isolation kernel design principles

•• The Denali isolation kernelThe Denali isolation kernel
– design and implementation

•• EvaluationEvaluation
•• Future directions and conclusionsFuture directions and conclusions

Denali: lightweight VMs ©2002, Steven D. Gribble

Evaluation strategyEvaluation strategy

•• GoalsGoals
– demonstrate virtualization overhead is reasonable
– evaluate impact of choices in virtual architecture
– demonstrate scalability of system

•• All experiments done on:All experiments done on:
– 1700 MHz Pentium 4
– 1 GB RAM
– Intel Pro/1000 gigabit card
– three 80 GB, 7200 RPM IDE drives

1313

Denali: lightweight VMs ©2002, Steven D. Gribble

Packet dispatch latencyPacket dispatch latency

•• Virtualization overhead is smallVirtualization overhead is small
– less than 20% of packet reception latency!

VM / kernel crossing1112 / 1115

VM’s device driver

358 / 377

TCP Stack

16255 / 20409
read()

VNIC FIFOs VNIC demux ethernet driver

5026 / 6144 1975 / 2048 18751 / 18909

ethernet
packet
arrival

Denali: lightweight VMs ©2002, Steven D. Gribble

TCP, HTTP throughputTCP, HTTP throughput

•• TCP throughputTCP throughput
– Linux-Linux: 601 Mb/s
– Denali-Linux: 569 Mb/s (5% slower)

•• Web server throughputWeb server throughput

0
100
200
300
400
500
600
700

1 10 100 1000
document size (KB)

th
ro

ug
hp

ut
 (M

b/
s)

Linux
Denali

1414

Denali: lightweight VMs ©2002, Steven D. Gribble

Benefits of batched interruptsBenefits of batched interrupts

•• Compared web server running on…Compared web server running on…
– Denali with batched, asynchronous interrupts
– modified Denali that immediately context switches on interrupt

0
50

100
150

200
250

300
350

400
450

0 100 200 300 400 500 600 700 800 900 1000

virtual machines

se
rv

ed
 lo

ad
 (r

eq
/s

ec
) batched

sync

Denali: lightweight VMs ©2002, Steven D. Gribble

Benefits of idleBenefits of idle--withwith--timeouttimeout

•• 64 web server 64 web server VMs VMs serving 100KB docs, compared:serving 100KB docs, compared:
– guest OS that exploits idle-with-timeout

• software timer absorbs TCP retransmissions, OS idle thread
invokes idle-with-timeout with smallest pending timer

– guest OS that only calls idle when no TCP retransmissions
• OS idle spinloops if no runnable threads, and timer pending

•• idleidle--withwith--timeout: timeout: 430430 requests per secondrequests per second
•• spinloopspinloop: : 219219 requests per secondrequests per second

1515

Denali: lightweight VMs ©2002, Steven D. Gribble

PerPer--VM Metadata in Isolation KernelVM Metadata in Isolation Kernel

•• Isolation kernel is essentially stateless (unlike an OS)Isolation kernel is essentially stateless (unlike an OS)
– scaling limit: size of metadata kept for a swapped-out VM
– 10,000 VMs require use of about 100MB of memory

Component Size (bytes)
thread stack 8192
register file 24

swap region metadata 20
paging metadata 40

virtual Ethernet structure 80
pending alarms 8

VM boot command line 64
other 72
Total 8472

ScalabilityScalability

•• Gain intuition with a simple cache model [Breslau]Gain intuition with a simple cache model [Breslau]
– a “performance cliff” exists for small changes in hit rate!
– must minimize footprint of a VM

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1
hit rate

%
 o

f h
it

th
ro

ug
hp

ut

miss thpt = 100% of hit miss thpt = 10% of hit
miss thpt = 3% of hit miss thpt = 1% of hit

1616

Denali: lightweight VMs ©2002, Steven D. Gribble

PerPer--VM working set sizeVM working set size

•• Needed to redesign Needed to redesign Mbuf Mbuf pool structure in BSD stackpool structure in BSD stack
– original linked-list structure spread sequentially allocated mbufs

across virtual address space over time
– new hashed structure consolidates sequentially allocated

mbufs on same virtual pages
• factor of 2 improvement in footprint, and as a result, performance

0 256 512 768 1024 1280 1536 1792 2048

linked list

hash table

working set size (kilobytes)

pseudoregisters
code
static data
web object
dynamic data (incl. mbufs)

1120 KB

352 KB
944 KB total

1712 KB total

ScalabilityScalability

•• Two performance regimesTwo performance regimes
– all machines fit in memory: performance degradation from

context switching overhead
– many machines swapped to disk: performance dominated by

disk performance

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600

virtual machines

se
rv

ed
 lo

ad
 (r

eq
ue

st
/s

ec
)

1717

Denali: lightweight VMs ©2002, Steven D. Gribble

Workload and scaleWorkload and scale

•• For diskFor disk--bound workloads, degree of locality (value of bound workloads, degree of locality (value of
Zipf Zipf parameter) affects performanceparameter) affects performance

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

virtual machines

se
rv

ed
 lo

ad
 (r

eq
ue

st
s/

se
c)

analytic upper bound
heavy-tailed
random

Denali: lightweight VMs ©2002, Steven D. Gribble

OutlineOutline

•• IntroductionIntroduction
•• The case for isolation kernelsThe case for isolation kernels

– motivating applications
– isolation kernel design principles

•• The Denali isolation kernelThe Denali isolation kernel
– design and implementation

•• EvaluationEvaluation
•• Future directions and conclusionsFuture directions and conclusions

1818

Denali: lightweight VMs ©2002, Steven D. Gribble

Future DirectionsFuture Directions

•• Build and explore the motivating applicationsBuild and explore the motivating applications
– expect that an isolation kernel is only part of the solution
– e.g., the “data issue” for dynamic content generation in CDNs

•• Virtual clustersVirtual clusters
– run isolation kernel on each node in cluster
– grow and shrink “virtual clusters” within physical cluster

•• Performance isolationPerformance isolation
– fairness of resource allocation across VMs
– independence of resource allocation policies (CPU, I/O, …)

•• Other applicationsOther applications
– untrusted device drivers in OS
– VMs as application model for desktop OSs

Denali: lightweight VMs ©2002, Steven D. Gribble

ConclusionsConclusions

•• Three contributions of this talk:Three contributions of this talk:
1. identification of an emerging class of applications that require

multiplexing of untrusted services on shared infrastructure
2. design principles for isolation kernels
3. design, implementation, and evaluation of the Denali isolation

kernel

•• Scale and performance is possible!Scale and performance is possible!
– required careful design of virtual architecture

